HP 9000 Series 200/300 Computers A ordiaro

BASIC 4.0 Language Reference

L BASIC 4.0 Language Reference
for the HP 9000 Series 200/300 Computers

Manual Reorder No. 98613-90051

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

July 1985...Edition 1

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Table of Contents

Language History. e 1
Language HiStory. 1
Keyboards 7
Using the Keyword Dictionary e 7
Legal Usage Table. i e 7
Syntax Drawings Explained 8
Keywords and Spaces. 8
BASIC Language Reference for HP Series 200/300 SRM Workstations. 473
Syntax for Remote File and Directory Specification 474
Remote File Specifier 474
Directory Path 475
Remote MSUS. oot 476
Directory Specifier. 478
Access Capability Requirements 479
Table of Access Capabilities Required for Keyword Use 480
Using Protected Files Created on a Pascal Workstation. 481
Summary of BASIC Keyword Useon SRM. o i i 482
ASSIGN . 483
CAT 484
CHECKREAD 488
CONTROL . .o e 489
COPY . o 490
CREATE ASCIL. . .. e 491
CREATE BDATottt e e e e e 492
CREATE DIR. . ..o e e 493
ENTER 494
GET 495
INITIALIZE . .. 496
LOA DD . 497
LOADSUB. 498
LOCK . . 499
MASS STORAGE IS (MSI) e 500
ON TIMEOUT . . . e 501
OUTPUT . .. e 502
PLOTTER IS . . . e 503
PRINTER LS. 504
PROTECT . .. 505
PURGE 507
RENAME . .. 508
RE-SAVE 509
RESET . . 510
RE-STORE . . . 511

SAVE . 512

STATUS. . 514
STORE... e 515
STORE SYSTEM . ..o 516

QY ST EMS . . 517
TRANSFER . . . 518
UNLOCK . . .o 519

SRM BASIC Error Codes for HP Series 200/300 Computers. 520
GloSSATY 521
Interface Registers 533
[/0 Path Status and Control Registers. i 533
CRT Status and Control Registers. i 535
Keyboard Status and Control Registers .. 538
HP-IB Status and Control Registers 541
RS-232 Status and Control Registers 546
GPIO Status and Control Registers. i 551
BCD Status and Control Registers. i 553
Data Communications Status and Control Registers. 556
Powerfail Status and Control Registers. i 565
EPROM Programmer Status and Control Registers 567
PARITY, CACHE and FLOAT Status and Control Registers. 569
Summary of SRM Status Registers o 570
Useful Tables. 571
Option Numbers 571
Interface Select Codes 571
Display-Enhancement Characterso i i 572

US ASCII Character Codes e 573
U.S./European Display Characters i 575
U.S./European Display Characterso i 577
U.S./European Display Characters i i 579
Katakana Display Characters. i 581
Katakana Display Characters 583
Master Reset Table 585
Graphic Reset Table 588
Interface Reset Table. 589
Second Byte of Non-ASCIl Key Sequences. 591
Selected High-Precision Metric Conversion Factors 592
Error Messages. 593
Keyword Summanry 603
Vocabulary 609

Manual Comment Sheet Instructions. 610

Language History

Language History
This manual documents the BASIC 4.0 Language System used on HP 9000 Series 200/300
computers. There are several versions (other than 4.0) of this language in use today. The
following table is provided for those users who have more than one BASIC version, or who are
upgrading to BASIC 4.0. The table lists each statement available on any version and notes where
optional BIN files are needed.

Statement

BASIC 2.0/2.1

BASIC 3.0/4.0

ABORT
ABORTIO
ABS

ACS
ALLOCATE
ALPHA

AND

AREA

ASN
ASSIGN
ATN

AXES

BASE

BEEP
BINAND
BINCMP
BINEOR
BINIOR

BIT

BREAK
CALL

CAT
CHANGE
CHECKREAD
CHR$
CLEAR

CLIP

COM

CONT
CONTROL
COPY
COPYLINES
COS
CREATE ASCII
CREATE BDAT
CREATE DIR
CRT

CSIZE

AP2.0

GRAPH2.1

AP2.0

AP2.0

AP2.0
AP2.0

AP2.0

SRM
AP2.0

10
TRANS

GRAPH

GRAPHX

GRAPH
MAT

PDEV
MS

10
GRAPH

PDEV

SRM

GRAPH

Statement

BASIC 2.0/2.1

BASIC 3.0/4.0

DATA

DATE

DATE$
DEALLOCATE
DEF FN

DEG

DEL
DELSUB
DET
DIGITIZE
DIM
DISABLE
DISABLE INTR
DISP

DIV

DOT

DRAW
DROUND
DUMP ALPHA
DUMP GRAPHICS
DUMP DEVICE IS
DVAL

DVAL$

EDIT

EDIT KEY
ENABLE
ENABLE INTR
END

ENTER
ERRDS

ERRL

ERRM$
ERRN

EXOR

EXP

FIND

FN

FOR. .NEXT
FRACT
FRAME
GCLEAR
GESCAPE
GET

GINIT
GLOAD
GOSUB
GOTO
GRAPHICS
GRAPHICS INPUT IS
GRID
GSTORE

AP2.0
AP2.0

AP2.0
GRAPHZ2.0

AP2.0

AP2.0
AP2.0

AP2.0

AP2.0

AP2.0

AP2.0

AP2.0

GRAPHZ.1

GRAPHZ2.0

CLOCK
CLOCK

MAT
GRAPHX

10

MAT
GRAPH

GRAPH
GRAPH

KBD

PDEV

GRAPH
GRAPH
GRAPHX

GRAPH
GRAPH

GRAPH
GRAPHX
GRAPH
GRAPH

Statement BASIC 2.0/2.1 |BASIC 3.0/4.0
IDRAW GRAPH
IF...THEN
IMAGE
IMOVE GRAPH
INDENT AP2.0 PDEV
INITIALIZE
INPUT
INT
INTEGER
IPLOT GRAPH
IPLOT array GRAPHX
IVAL AP2.0
IVAL$ AP2.0
KBD AP2.0
KBD$
KNOBX
KNOBY n.a
LABEL GRAPH
LDIR GRAPH
LEN
LET
LEXICAL ORDER IS AP2.0 LEX
LGT
LINE TYPE GRAPH
LINPUT
LIST
LIST BIN n.a.
LIST KEY AP2.0 KBD
LOAD
LOAD BIN
LOAD KEY AP2.0 KBD
LOADSUB
LOCAL 10
LOCAL LOCKOUT 10
LOCK SRM SRM
LOG
LOOP
LORG GRAPH
LWC$ AP2.0
MASS STORAGE IS
MAT AP2.0 MAT
MAT REORDER AP2.0 MAT
MAT SORT AP2.0 MAT
MAX AP2.0 MAT
MAXREAL n.a.
MIN AP2.0 MAT
MINREAL n.a.
MOD
MODULO n.a.
MOVE GRAPH
MOVELINES AP2.0 PDEV

Statement BASIC 2.0/2.1 [BASIC 3.0/4.0
NOT
NPAR
NUM
ON/OFF CYCLE AP2.0 CLOCK
ON/OFF DELAY AP2.0 CLOCK
ON/OFF END
ON/OFF EOR AP2.0 TRANS
ON/OFF EOT AP2.0 TRANS
ON/OFF ERROR
ON/OFF INTR 10
ON/OFF KBD
ON/OFF KEY
ON/OFF KNOB
ON/OFF SIGNAL AP2.0 10
ON/OFF TIME AP2.0 CLOCK
ON/OFF TIMEOUT
ON
OPTION BASE
OR
OUTPUT
PASS CONTROL AP2.0 10
PAUSE
PEN GRAPH
PENUP GRAPH
PDIR n.a GRAPH
Pl
PIVOT GRAPH
PLOT GRAPH
PLOT array GRAPHZ2.1 GRAPHX
PLOTTER IS GRAPH
PLOTTERS file n.a. GRAPH
POLYGON GRAPHZ.1 GRAPHX
POLYLINE GRAPHZ2.1 GRAPHX
POS
PPOLL 10
PPOLL CONFIGURE 10
PPOLL. RESPONSE AP2.0 10
PPOLL UNCONFIGURE 10
PRINT
PRINT LABEL n.a. MS
PRINTALL IS
PRINTER IS
PRINTER IS file n.a
PROTECT
PROUND AP2.0
PRT AP2.0

PURGE

Statement

BASIC 2.0/2.1

BASIC 3.0/4.0

RAD
RANDOMIZE
RANK

RATIO

READ

READIO

READ LABEL
READ LOCATOR
REAL
RECTANGLE
REDIM

REM

REMOTE

REN

RENAME
REPEAT...UNTIL
REQUEST
RE-SAVE

RES

RESET
RESTORE
RE-STORE
RE-STORE BIN
RE-STORE KEY
RESUME INTERACTIVE
RETURN

REV$

RND

ROTATE
RPLOT

RPLOT array
RPT$

RUN

SAVE

SC

SCRATCH
SCRATCH BIN
SCRATCH KEY
SECURE
SELECT...CASE
SEND

SET ECHO
SET LOCATOR
SET PEN

SET TIME

SET TIMEDATE
SGN

SHIFT

AP2.0

n.a.

GRAPHZ.0

GRAPHZ.1
AP2.0

AP2.0

n.a.
AP2.0
AP2.0

AP2.0

GRAPH
AP2.0

AP2.0

n.a.

AP2.0

n.a.
GRAPH2.0

n.a.

GRAPH2.1

MAT
GRAPH

MS
GRAPHX

GRAPHX
MAT

10

10
(0]

n.a

KBD

GRAPH
GRAPHX

KBD
PDEV

I0

GRAPHX
GRAPHX
GRAPHX

Statement BASIC 2.0/2.1 |BASIC 3.0/4.0
SHOW GRAPH
SIGNAL AP2.0 10
SIN
SIZE AP2.0 MAT
SPOLL 10
SQR
STATUS
STOP
STORE
STORE BIN n.a.
STORE KEY AP2.0 KBD
STORE SYSTEM n.a.
SUB
SUBEXIT
SUM AP2.0 MAT
SUSPEND INTERACTIVE
SYMBOL GRAPH2.1 GRAPHX
SYSBOOT n.a.
SYSTEM PRIORITY AP2.0
SYSTEM$ AP2.0
SYSTEM$ PLOTTER IS GRAPH2.0 GRAPH
SYSTEM$ GRAPHICS INPUT IS GRAPH2.0 GRAPH
SYSTEMS$ LEXICAL ORDER IS AP2.0 LEX
SYSTEM$ KEYBOARD LANGUAGE | AP2.0 LEX
TAN
TIME AP2.0 CLOCK
TIME$ AP2.0 CLOCK
TIMEDATE
TRACE ALL PDEV
TRACE OFF PDEV
TRACE PAUSE PDEV
TRACK GRAPH2.0 GRAPHX
TRANSFER AP2.0 TRANS
TRIGGER IO
TRIM$ AP2.0
UNLOCK SRM SRM
UPC$ AP2.0
VAL
VAL$
VIEWPORT GRAPH
WAIT
WAIT FOR EOR AP2.0 TRANS
WAIT FOR EOT AP2.0 TRANS
WHERE GRAPH2.1 GRAPHX
WHILE
WINDOW GRAPH
WRITEIO
XREF AP2.0 XREF

Keyboards
The Series 200/300 Computers support three keyboard styles:

e HP 98203B
e HP 98203A
e HP 46020A

Throughout the manuals which document the BASIC Language System, specific keys are men-
tioned. Because many key labels are different on each keyboard, you will not have all the keys

mentioned. For example, (_EXECUTE) and normally have the same meaning, but only one
of them appears on any one keyboard. The BASIC User’s Guide discusses the keyboards.

Within this manual, the keys for each keyboard are listed the first time they are used in a statement
description. Thereafter, only one keyboard’s keys are used.

Using the Keyword Dictionary

This section contains an alphabetical reference to all the keywords currently available with the
BASIC language system of the Series 200/300 computers. Each entry defines the keyword,
shows the proper syntax for its use, gives some example statements, and explains relevant
semantic details. A cross reference is provided in the back that groups the keywords into several
functional categories.

Legal Usage Table

Above each drawing is a small table indicating the legal uses of the keyword. Option Required
indicates what must be resident in the computer (other than BASIC 4.0) in order to use the
keyword. Specific headings under Semantics may list a requirement for the specific feature being
discussed if the keyword has expanded semantics with binary extensions. Shaded areas of the
syntax diagram flag syntactic changes which depend upon the binary extensions to the language.

“Keyboard Executable”” means that a properly constructed statement containing that keyword can
be typed into the keyboard input line and executed by a press of the ((EXECUTE), (ENTER), or
key. “‘Programmable’ means that a properly constructed statement containing that
keyword can be placed after a line number and stored in a program. Certain non-programmable
keywords can be ‘“forced” into a program by sending them to the keyboard buffer with an
OUTPUT 2 statement. This is not what is meant by ‘“Programmable’’.

“Inan IF...THEN...” means that a properly constructed statement containing that keyword can be
placed after “THEN” in a single-line IF... THEN statement. Keywords that are prohibited in a
single-line IF... THEN are not necessarily prohibited in a multiple-line IF... THEN structure. Con-
structs such as IF.. THEN, REPEAT...UNTIL, and FOR...NEXT statements are executed con-
ditionally when they are included in a multiple-line IF... THEN structure. All other prohibited state-
ments (see [F... THEN) are used only during pre-run. Therefore, the action of those statements will
not be conditional, even though the IF... THEN wording may make them appear to be conditional.

Syntax Drawings Explained

Statement syntax is represented pictorially. All characters enclosed by a rounded envelope
must be entered exactly as shown. Words enclosed by a rectangular box are names of items
used in the statement. A description of each item is given either in the table following the
drawing, another drawing. or the Glossary. Statement elements are connected by lines. Each
line can be followed in only one direction, as indicated by the arrow at the end of the line. Any
combination of statement elements that can be generated by following the lines in the proper
direction is syntactically correct. An element is optional if there is a path around it. Optional
itens usually have default values. The table or text following the drawing specifies the default
value that is used when an optional item is not included in a statement.

Comments may be added to any valid line. A comment is created by placing an exclamation
point after a statement, or after a line number or line label. The text following the exclamation
point may contain any characters in any order.

The drawings do not necessarily deal with the proper use of spaces (ASCII blanks). In general,
whenever you are traversing a line, any number of spaces may be entered. If two envelopes are
touching, it indicates that no spaces are allowed between the two items. However, this conven-
tion is not always possible in drawings with optional paths. so it is important to understand the
following rules for spacing.

Keywords and Spaces

The computer uses spaces, as well as required punctuation. to distinguish the boundaries
between various keywords, names. and other items. In general, at least one space is required
between a keyword and a name if they are not separated by other punctuation. Spaces cannot
be placed in the middle of keywords or other reserved groupings of symbols. Also, keywords
are recognized whether they are typed in uppercase or lowercase. Therefore, to use the letters
of a keyword as a name, the name entered must contain some mixture of uppercase and
lowercase letters. The following are some examples of these guidelines.

Space Between Keywords and Names

The keyword NE: T and the variable Count are properly entered with a space between them, as
in NEXT Count. Without the space. the entire group of characters is interpreted as the name
Hextcount.

No Spaces in Keywords or Reserved Groupings

The keyword DELSUE cannot be entered as DEL SUB. The array specifier (%) cannot be
entered as (* 1. A function call to "A$" must be entered as FNA%, notas FN A %. The /O
path name ‘‘@Meter” must be entered as EMeter. not as @ Meter. The “‘exceptions™ are
keywords that contain spaces. such as END IF and OPTION BASE.

Using Keyword Letters for a Name

Attempting to store the line IF ¥=1 THEN END will generate an error because END is a
keyword not allowed in an IF... THEN. To create a line label called “"End"’, type
IF ¥=1 THEN ENd. This or any other mixture of uppercase and lowercase will prevent the
name from being recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as MOD, DIV, and
EXOR). In such cases, you should type the name with a case switch in the infix operator portion of
the name (e.g., MOdULE, DiVISOR).

Option Required

Keyboard Executable

Programmagle
In an IF...THEN...

()
Yes
Yes
Yes

This statement ceases activity on the specified interface.

@]

interface
select code

I/0 path
name

ABORT

. Range
Item Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 5, 7 thru 31

I/O path name

name assigned to an HP-IB interface select | any valid

code

Example Statements

ABORT 7

IF Stop_code THEN ABORT BSource

Semantics
HP-IB Interfaces

name (see ASSIGN)

Executing this statement ceases activity on the specified HP-IB interface; other interfaces may
not be specified. If the computer is the system controller but not currently the active controller,
executing ABORT causes the computer to assume active control.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100psec) MTA
Controller REN UNL
ATN ATN
Error Error
IFC (duration
Not Active =100 psec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

Data Communications Interfaces
Directing this statement to a Data Communications interface clears the buffers and disconnects

the interface.

10

ABORTIO

Option Required TRANS
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement terminates a TRANSFER which is currently taking place through an I/O path
assigned to a device, group of devices, or mass storage file.

Range
Restrictions

Item I Description/Default

name assigned to a device, a group of devices, or any valid name

a mass storage file

/O path name

Example Statements

ABORTIO @Interface
IF Storp_fladg THEN ABORTIO @Device

Semantics

This statement terminates a TRANSFER (in either direction) currently taking place through the
specified I/O path name. The I/O path name must be assigned to an interface select code, device
selector, or mass storage file; if the I/O path name is assigned to a buffer; error 170 is reported.

An end-of-transfer (EOT) branch is initiated if an ON EOT branch is currently defined for the I/O
path name; however, no currently defined EOR branch will be initiated.

The ABORTIO has no effect if no TRANSFER is taking place through the I/O path name.

If a TRANSFER to or from an I/O path name was terminated by an error, executing ABORTIO on
that I/0O path name causes the error to be reported.

ABS

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns the absolute value of its argument. The result will be of the same type

(REAL or INTEGER) as the argument. (Except for the ABS of the INTEGER — 32 768, which
causes an error).

numeric
expression

Example Statements

Madgnitude=ABS(VYector)
PRINT "WYalue ="3ABS(X1)

11

12

ACS

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the principal value of the angle which has a cosine equal to the argument.
This is the arccosine function.

N OSEETNO

s Range
Item I Description/Default | Restrictions
argument | numeric expression | -1 thru +1

Example Statements

Angle=ACS(Cosine)
PRINT "Angle ="3ACS(XK1)

Semantics

The value returned is REAL. If the current angle mode is DEG, the range of the result is O thru
180 degrees. If the current angle mode is RAD, the range of the result is O thru « radians. The
angle mode is radians unless you specify degrees with the DEG statement.

ALLOCATE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement dynamically allocates memory for arrays and string variables during program
execution.

N
\/

OO
(N
LQ{ _/
(

upper
bound

lower
bound

W
array ({i upper
name bound

lower
bound

o . Range
Item Description/Default Restrictions

array name name of a numeric array any valid name
lower bound numeric expression, rounded to an integer; —32 768 thru +32 767
Default = OPTION BASE value (O or 1) (see “array’ in Glossary)
upper bound numeric expression, rounded to an integer —32 768 thru +32 767
(see “‘array’ in Glossary)

string name name of a string variable any valid name

string length numeric expression, rounded to an integer 1 thru 32 767

14 ALLOCATE

Example Statements

ALLOCATE Temp{Low:zHidh)
ALLOCATE R$LLEN(A%)+11

Semantics

Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE statement.
However, because of the stack discipline used when allocating, the freed memory space does
not become available unless all subsequently allocated items are also deallocated. For example,
assume that A$ is allocated first, then B$, and finally C$. If a DEALLOCATE A$ statement is
executed, the memory space for A$ is not reclaimed until B$ and C$ are deallocated. This same
stack is used for setting up ON-event branches, so subsequent ON-event statements can also
block the reclamation of deallocated memory.

The variables in an ALLOCATE statement cannot have appeared in COM, DIM, INTEGER or
REAL declaration statements. If variable(s) are to be allocated in a subprogram, the variable(s)
cannot have been included in the subprogram’s formal parameter list. Implicitly declared vari-
ables cannot be allocated. Numeric variables which are not specified as INTEGER are assumed to
be REAL. A variable can be re-allocated in its program context only if it has been deallocated and
its type and number of dimensions remain the same.

Exiting a subprogram automatically deallocates any memory space allocated within that pro-
gram context.

ALLOCATE can be executed from the keyboard while a program is running or paused. Howev-
er, the variable must have been declared in an ALLOCATE statement in the current program
context, and the variable must have already been allocated and deallocated.

ALPHA

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement turns the alphanumeric display on or off.

= “
OFF

Example Statements

ALPHA ON
IF Grarh THEN ALPHA OFF

Semantics

Items sent to the printout area while the alphanumeric display is disabled are placed in the
display memory even though they are not visible. Items sent to the keyboard input line, the
display line, or the system message line will turn on the alphanumeric display. The alpha-
numeric and graphic displays can both be on at the same time.

The alphanumeric area is enabled after power-on, RESET and SCRATCH A. Pressing the
ALPHA key on the keyboard also enables the alphanumeric display.

This statement has no effect on a bit-mapped display when the alpha write-enable mask specifies
all planes. This is the default state on those displays.

15

16

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This operator returns a 1 or a 0 based upon the logical AND of the arguments.

numeric numeric
expressiocn expression

Example Statements

IF Flag AND Test2 THEN Process
Fimal=Initial AND Valid

Semantics
A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a logical

0.

The logical AND is shown in this table:

17

AREA

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement defines or selects an area fill color. The fill color is used in all subsequent graphics
operations requiring area fill.

st) e () O

pen J
selector
Item Description/Default R Ra." ge
estrictions

hue numeric expression Othrul
saturation numeric expression Othrul
luminosity numeric expression 0 thru 1
red numeric expression 0 thru 1
green numeric expression 0 thru 1
blue numeric expression Othrul
pen selector numeric expression, rounded to an integer —32 768 thru +32 767

Example Statements

AREA COLOR Hue:SaturationsLuminosity
AREA COLOR X*,3,RNDsA"Z

AREA INTENSITY Red{(I) Green(I)sBlue(l)
AREA INTENSITY X*,3,RNDsA"Z2

AREA PEN 1

AREA PEN -Pen

18 AREA

Semantics

The default fill color is the color specified by Pen 1. This color is solid white after power-up.
SCRATCH A, or GINIT.

A fill color remains in effect until the execution of an AREA, GINIT, or SCRATCH A. Other
statements which may alter the current fill color (depending on the data passed to them) are
SYMBOL., PLOT. RPLOT, or IPLOT when used with an array. SET PEN affects pen colors. and
therefore can also affect fill colors specified with AREA statements.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered color)
results in a much more accurate representation of the desired color than the same color requested
with an AREA COLOR or AREA INTENSITY statement. To see the difference, compare the five
color plates shown in this entry with the corresponding plates in the SET PEN statement.

Note

The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

AREA PEN
A fill color specified with AREA PEN is guaranteed to be non-dithered, and the AREA PEN
statement executes much faster than AREA COLOR or AREA INTENSITY.

The pen numbers have the same effect as described in the PEN statement for line color except
that in the alternate pen mode, negative pens erase as in the normal pen mode: they do not
complement. Pen () in normal pen mode erases: it does not complement.

AREA COLOR

When AREA COLOR is executed on a color monitor, the HSL parameters are converted to RGB
values. Then, if the color requested is not available in the color map, the computer creates the
closest possible color in RGB color space to the one requested by filling the 4 x 4 dither cell with
the best combination of colors from the color map.

In non-color map mode, there are eight colors total, and they cannot be redefined. This simulates
the operation of the HP98627A. In color map mode, there are sixteen or 256 total colors
depending on your hardware, and they can be redefined with SET PEN.

AREA

The following plate of the screen shows the changes brought about by varying one of the HSL
parameters at a time.The bottom bar shows that when saturation (the amount of color) is zero,
hue makes no difference, and varying luminosity results in a gray scale.

Hue-@
Tat=

Lum=|

Him—1

Hues/Saturation/lLuminosaty

Tridivrdual Cftects un Fainal Color

6]
[S

!
1

Satcg—> |

| um= |

-1

Luminosi ty
[INNEPENIES W VIS S W) L VPN UGS S S W S WV S——m—

Lum=R->1

Lum-9

Luminosity (Gray Scale!

TN S

-l

The following color wheel represents the colors selected as the hue value goes from 0 through 1.
Any value between zero and one, inclusive, can be chosen to select color. The resolution (the
amount the value can change before the color on the screen changes) depends on what the value
of the hue is as well as the values of the other two parameters.

HSL Color Wheel

19

20 AREA

The next plate shows the effect that varying saturation and luminosity have on the color
produced. Each of the small color wheels is a miniature version of the large one above, except it

has fewer segments.

Effects of Saturation and Luminosity on Color

AREA INTENSITY

The following plate demonstrates the effect of varying the intensity of one color component when
the other two remain constant.

RGB Addition: One Color at a Time

Recimid—7 |
Grean=p, Hioss]

Reu=0 > |
Grean=i, Elus~@

Rad=0-/t
dreen=1, Blue=l

Rpa=9, Higa=i
Gresn=B->1

Mac-1, Biusu D

Srean-@ 1

Rea=1, Binun=i
Green=-:1

Red=!, G een=|
Blua=p->1

AREA 21

The next plate shows combinations of red, green and blue. The values are given in fifteenths: 0
fifteenths, 5 fifteenths, 10 fifteenths, and 15 fifteenths—every fifth value. The values for each
color component are represented in that color.

Fory dldd i Lrorn

The HP98627A

When an HP98627A is used, the HSL values specified in an AREA COLOR statement are
converted to RGB. The parameters of an AREA INTENSITY statement are already in RGB. The
RGB values specify the fraction of dots per 4 X 4-pixel area to be turned on in each memory
plane. The red value corresponds to memory plane 1, the green value to memory plane 2, and
the blue value to memory plane 3.

The AREA PEN selects one of the eight non-dithered colors available with no intensity control on
the color guns. See the PEN entry for the order of these colors.

The HP98627A dithers in a very similar way to the color monitors when the color map is not
enabled (see PLOTTER IS), using only eight colors when calculating the closest combination.

Monochromatic CRTs

When doing shading on a monochromatic CRT, dithering is always used. Dithering takes place in
a4 x4 cell, which allows zero through sixteen of the dots to be turned on, for a total of seventeen
shades of gray.

Since AREA PEN does not use dithering, only black and white are available. If the pen selector is
positive, the resulting fill color is white; if zero or negative, the resulting fill color is black.

When an AREA COLOR is executed, the hue and saturation parameters are ignored. Only the
luminosity value is used to determine the fraction of pixels to be turned on.

22 AREA

When an AREA INTENSITY is executed, the largest of the three values is used, and it specifies the
fraction of pixels to be turned on.

Alternate Pen Mode Fills

If the alternate drawing mode is in effect when the fill is performed, the area will be filled with
non-dominant color. See GESCAPE operation selectors 4 and 5.

In the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement.

ASCII

See the CREATE ASCII and LEXICAL ORDER IS statements.

ASN

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the principal value of the angle which has a sine equal to the argument.
This is the arcsine function.

O oRE=n N0

" Range
Item I Description/Default Restrictions
argument | numeric expression —1thru +1

Example Statements

Andle=ASN(Sine)
PRINT "Andle ="3ASN(X1)

Semantics

The value returned is REAL. If the current angle mode is DEG, the range of the result is —90
thru + 90 degrees. If the current angle mode is RAD, the range of the resultis — /2 thru + /2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

23

24

ASSIGN

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement is used to perform one of the following actions: assign an I/O path name and
attributes to a device, a group of devices, a mass storage file, or a buffer; change attributes; or
close an I/O path name. (If using ASSIGN with SRM, also refer to the “SRM” section of this
manual.)

ASSIGN 1/0 path J

i A

device
selector

file
specifier

attribute

literal form of file specifier:

file WY
name _/
protect .
code msus

ASSIGN 25

attributes:

— FORMAT ON >

26 ASSIGN

Item

Description/Default

Range
Restrictions

1/O path name
device selector

file specifier

string variable name
numeric array name

buffer size
{in bytes)

file name

protect code

msus

conversion string

end-of-line characters

time period

return variable name

name identifying an 1/O path
numeric expression

string expression

name of a string variable
name of a numeric array

numeric expression, rounded to an integer

literal

literal. first two non-blank characters are signifi-
cant

literal

name of a string variable

string expression:
Default=CR and LF

numeric expression, rounded to the nearest
0.001 seconds:
Default=0

name of a numeric variable

any valid name
(see Glossary)
(see drawing)
any valid name
any valid name

1 thru available memory

minus 490
any valid file name

“ =" not allowed

(see MASS
STORAGE IS)

up to 256 characters
(with INDEX):
even number of
characters

(with PAIRS)

up to 8 characters

0.001 thru 32.767

any valid name

ASSIGN 27

Example Statements

ASSIGN @File TO Name$BMsuss
ASSIGN @Source TO IsciFORMAT OFF
ASSIGN @Source iFORMAT ON

ASSIGN @Device TO 724

ASSIGN BListeners TO 711,712,715
ASSIGN BDest TO *

ASSIGN EBBuf_1 TO BUFFER Strind_variable$
ASSIGN BBuf_2 TO BUFFER Numeric_arravy (%)
ASSIGN EBuf_3 TO BUFFER [1281]

ASSIGN BResource TO GeioiWORD,,CONVERT IN BY INDEX In%$
ASSIGN BResource ;CONVERT OUT BY INDEX Outs

ASSIGN BResource TO HepibiEOL Eol% END DELAY .03
ASSIGN BResource TO Rs_.23Z3iPARITY 0ODD

Semantics

The ASSIGN statement has three primary purposes. Its main purpose is to create an I/O path
name and assign that name to an /O resource and attributes that describe the use of that
resource. The statement is also used to change the attributes of an existing I/O path and to close
an /O path.

Associated with an I/O path name is a unique data type that uses about 200 bytes of memory. I/O
path names can be placed in COM statements and can be passed by reference as parameters to
subprograms. They cannot be evaluated in a numeric or string expression and cannot be passed
by value.

Once an I/O path name has been assigned to a resource, OUTPUT, ENTER, TRANSFER,
STATUS, and CONTROL operations can be directed to that /O path name. This provides the
convenience of re-directing I/O operations in a program by simply changing the appropriate
ASSIGN statement. The resource assigned to the /O path name may be an interface, a device, a
group of devices on HP-IB, a mass storage file or a buffer. Note that the Status and Control
registers of an I/O path are different from the Status and Control registers of an interface. All

Status and Control registers are summarized in the “‘Interface Registers’ section at the back of
the book.

The FORMAT Attributes

Assigning the FORMAT ON attribute to an I/O path name directs the computer to use its ASCII
data representation while sending and receiving data through the I/O path. Assigning the
FORMAT OFF attribute to an I/0O path name directs the computer to use its internal data
representation when using the 1/O path.

LIF ASCII format (similar to ASCII representation) is always used with ASCII files; thus, if either
FORMAT ON or FORMAT OFF is specified for the I/O path name of an ASCII file, it will be
ignored.

28 ASSIGN

It a FORMAT attribute is not explicitly given to an /O path, a default is assigned. The following
table shows the default FORMAT attribute assigned to computer resources.

Resource | Default Attributes
interface/device FORMAT ON
ASCII file (always ASCII format)
BDAT file FORMAT OFF
buffer FORMAT ON

The FORMAT OFF attribute cannot be assigned to an I/O path which currently possesses any
non-default CONVERT or PARITY attribute(s), and vice versa.

Using Devices

I/O path names are assigned to devices by placing the device selector after the keyword TO. For
example, ASSIGN BDiseplav TO 1 creates the I/O path name “‘@Display’ and assigns it to
the internal CRT. The statement ASSIGN @Meters TO 710,711,712 creates the I/O path
name “‘@Meters’" and assigns it to a group of three devices on HP-IB. When multiple devices are
specified, they must be on the same interface.

When an I/O path name which specifies multiple devices is used in an OUTPUT statement, all
devices referred to by the I/O path name receive the data. When an I/0 path name which specifies
multiple devices is used in an ENTER statement, the first device specified sends the data to the
computer and to the rest of the devices. When an [/O path name which specifies multiple HP-IB
devices is used in either CLEAR, LOCAL, PPOLL CONFIGURE, PPOLL UNCONFIGURE,
REMOTE, or TRIGGER statement, all devices associated with the I/O path name receive the
HP-IB message.

A device can have more than one I/O path name associated with it. Each I/O path name can have
different attributes, depending upon how the device is used. The specific I/O path name used for
an [/O operation determines which set of attributes is used for that operation.

Using Files

Assigning an I/O path name to a file name associates the I/O path with a file on the mass storage
media. The mass storage file must be a data file, either ASCII or BDAT. The file must already exist
on the media, as ASSIGN does not do an implied CREATE.

ASCII and BDAT files have a position pointer which is associated with each 1/0O path name. The
position pointer identifies the next byte to be written or read, and the value of the position pointer
is updated with each ENTER or OUTPUT that uses that [/O path name. The position pointer is
reset to the beginning of the file when the file is opened. A file is opened by any ASSIGN
statement that includes the file specifier. It is best if a file is open with only one I/0 path name at a
time.

BDAT files have an additional pointer for end-of-file. The end-of-file value from the media is read
when the file is opened. The end-of-file pointer is updated on the media at the following times:
® When the current end-of-file changes.

® When END is specified in an OUTPUT statement directed to the file.

® When a CONTROL statement directed to the I/O path name changes the position of the
end-of-file pointer.

ASSIGN 29

Using Buffers (Requires TRANS)

The ASSIGN statement is also used to create a buffer (called an ‘‘unnamed’’ buffer) and assign
an I/0 path name to it or to assign an 1/O path name to a buffer (called a “‘named” buffer) which
has been previously declared in a COM, DIM, INTEGER, or REAL declaration statement. Once
assigned an /O path name, a buffer may be the source or destination of a TRANSFER, the
destination of an OUTPUT, or the source of an ENTER statement.

1/0 path names assigned to buffers contain information describing the buffer, such as buffer
capacity, current number of bytes, and empty and fill pointers. This information can be read from
STATUS registers of the /O path name; some of this information may be modified by writing to
CONTROL registers. See the “‘Interface Registers” tabbed section for I/O path register defini-
tions.

The ASSIGN statement that assigns the I/O path name to a named buffer (or creates an unnamed
buffer) sets these registers to their initial values: the buffer type is set to either 1 (named buffer) or
2 (unnamed buffer); the empty and fill pointers are set to 1; the current-number-of-bytes register
and all other registers are set to 0.

Named buffers can also be accessed through their variable names in the same manner that other
variables of that data type can be accessed. However, with this type of access, the buffer registers
are not updated; only the data in the buffer changes. For example, using LET to place characters
in a named string-variable buffer does not change the empty and fill pointers or the current-
number-of-bytes register; only the buffer contents and string’s current length can be changed. It
is highly recommended that the string’s current length (set to the string’s dimensioned length by
ASSIGN) not be changed in this manner. Unnamed buffers can be accessed only through their
[/O path names.

Using ENTER, OUTPUT, or TRANSFER to access a named buffer through its I/O path name
updates the appropriate buffer registers automatically; this is unlike accessing a named buffer
through its declared variable name (as above).

An [/O path name cannot be assigned to a buffer which will not exist for as long as the I/O path
name; this “lifetime” requirement has several implications. Buffers cannot be declared in
ALLOCATE statements. If a buffer’s /O path name is to appear in a COM block, the buffer must
appear in the same COM block; thus, I/O path names assigned to unnamed buffers cannot
appear in COM. If a buffer’s /O path name is to be used as a formal parameter of a subprogram,
the buffer to which it will be assigned must appear in the same formal parameter list or appear in a
COM which is accessible to that subprogram context. An [/O path name which is a formal
parameter to a subprogram cannot be assigned to an unnamed bulffer in the subprogram.

30 ASSIGN

Addition Attributes (Requires 10)

The BYTE attribute specifies that all data is to be sent and received as bytes when the I/O path
name is used in an ENTER, OUTPUT, PRINT, or TRANSFER statement that accesses a device,
file, or buffer and when the I/O path name is specified as the PRINTER IS or PRINTALL IS
device. In a TRANSFER, the attribute of BYTE or WORD associated with the non-buffer I/O path
name determines how the data is sent.

When neither BYTE nor WORD is specified in any ASSIGN statement for an I/O path, BYTE is
the default attribute. Once the BYTE attribute is assigned (either explicitly or by default) to an I/O
path name, it cannot be changed to the WORD attribute by using the normal method of changing
attributes (see Changing Attributes below); the converse is also true for the WORD attribute.

The WORD attribute specifies that all data is to be sent and received as words (in the same
situations as with BYTE above). If the interface to which the 1/0 path is assigned cannot handle
16-bit data, an error will be reported when the ASSIGN is executed; similarly, if the buffer has a
capacity which is an odd number of bytes, an error will be reported. If the FORMAT ON attribute
is in effect, the data will be buffered to allow sending words. The first byte is placed in a
two-character buffer; when the second byte is placed in this buffer, the two bytes are sent as one
word. A Null character, CHR$(0), may be sent to this buffer to force alignment on word
boundaries at the following times: before the first byte is sent, before a numeric item is sent with a
W image, after an EOL sequence, or after the last byte is sent to the destination. These Nulls may
be converted to another character by using the CONVERT attribute (see below). If WORD has
been set explicitly, it remains in effect even when the other defaults are restored (see Changing
Attributes). The only way to change the WORD attribute is to explicitly close the path name.

The CONVERT attribute is used to specify a character-conversion table to be used during
OUTPUT and ENTER operations; OUT specifies conversions are to be made during all OUT-
PUTs through the I/O path, and IN specifies conversions with all ENTERs. The default attributes
are CONVERT IN OFF and CONVERT OUT OFF, which specify that no conversions are to be
made in either direction. No non-default CONVERT attribute can be assigned to an I/O path
name that currently possesses the FORMAT OFF attribute, and vice versa.

CONVERT...BY INDEX specifies that each original character’s code is used to index the replace-
ment character in the specified conversion string, with the only exception that CHR$(0) is
replaced by the 256th character in the string. For instance, CHR$(10) is replaced by the 10th
character, and CHR$(0) is replaced by the 256th character in the conversion string. If the string
contains less than 256 characters, characters with codes that do not index a conversion-string
character will not be converted.

CONVERT...BY PAIRS specifies that the conversion string contains pairs of characters, each pair
consisting of an original character followed by its replacement character. Before each character is
moved through the interface, the original characters in the conversion string (the odd characters)
are searched for the character’s occurrence. If the character is found, it will be replaced by the
succeeding character in the conversion string; if it is not found, no conversion takes place. If
duplicate original characters exist in the conversion string, only the first occurrence is used.

The conversion-string variable must exist for as long as the I/O path name (see explanation of the
“lifetime’’ requirement in the preceding section on Using Buffers). Changes made to the value of
this variable immediately affect all subsequent conversions which use the variable.

ASSIGN 31

When CONVERT OUT is in effect, the specified conversions are made after any end-of-line
(EOL) characters have been inserted into the data but before parity generation is performed (if in
effect). When CONVERT IN is in effect, conversions are made after parity is checked but before
the data is checked for any item-terminator or statement-terminator characters.

The EOL attribute specifies the end-of-line (EOL) sequence sent after all data during normal
OUTPUT operations and when the ‘L’ image specifier is used. Up to eight characters may be
specified as the EOL characters; an error is reported if the string contains more than eight
characters. The characters are put into the output data before any conversion is performed (if
CONVERT is in effect). If END is included in the EOL attribute, an interface-dependent END
indication is sent with the last character of the EOL sequence; however, if no EOL sequence is
sent, the END indication is also suppressed. If DELAY is included, the computer delays the
specified number of seconds (after sending the last character) before continuing. END and
DELAY apply only to devices; both are ignored when a file or buffer is the destination. The
default EOL sequence consists of sending a carriage-return and a line-feed character with no
END indication and no delay period. This default is restored when EOL is OFF.

The PARITY attribute specifies that parity is to be generated for each byte of data sent by
OUTPUT and checked for each byte of data received by ENTER. The parity bit is the most
significant bit of each byte (bit 7). The default mode is PARITY OFF. No non-default PARITY
attribute can be assigned to an I[/O path name which currently possesses the FORMAT OFF
attribute, and vice versa.

The following PARITY options are available:

Option Effect on Incoming Data Effect on Outbound Data

OFF No check is performed No parity is generated
EVEN Check for even parity Generate even parity
ODD Check for odd parity Generate odd parity

ONE Check for parity bit set (1) Set parity bit (1)
ZERO Check for parity bit clear (0) | Clear parity bit (0)

Parity is generated after conversions have been made on outbound data and is checked before
conversions on inbound data. After parity is checked on incoming data, the parity bit is cleared,;
however, when PARITY OFF is in effect, bit 7 is not affected.

If a PARITY attribute is in effect with the WORD attribute, the most-significant bit of each byte of
the word is affected.

Determining the Outcome of an ASSIGN (Requires 10)

Although RETURN is not an attribute, including it in the list of attributes directs the system to
place a code in a numeric variable to indicate the ASSIGN operation’s outcome. If the operation
is successful, a O is returned. If a non-zero value is returned, it is the error number which otherwise
would have been reported. When the latter occurs, the previous status of the I/O path name is
retained; the default attributes are not restored. If more than one error occurs during the
ASSIGN, the outcome code returned may not be either the first or the last error number.

If RETURN is the only item in an ASSIGN statement, the default attributes are not restored to the
I/O path (see Changing Attributes below). For example, executing a statement such as
ASSIGN @Io_rath3RETURN Outcome does not restore the default attributes.

32 ASSIGN

Changing Attributes

The attributes of a currently valid I/O path may be changed, without otherwise disturbing the
state of that /O path or the resource(s) to which it is assigned, by omitting the *“TO resource’
clause of the ASSIGN statement. For example, ASSIGN @FileiFORMAT OFF assigns the
FORMAT OFF attribute to the /O path name “‘@File” without changing the file pointers (if
assigned to a mass storage file). The only exception is that once either the BYTE or WORD
attribute is assigned to the [/O path name, the attribute cannot be changed in this manner; the I/O
path name must either be closed and then assigned to the resource or be re-assigned to change
either of these attributes.

A statementsuch as ASSIGN @Dev ice restores the default attributes to the I/O path name, if it is
currently assigned. As stated in the preceding paragraph, the only exception is that once the
WORD attribute is explicitly assigned to an /O path name, the default BYTE attribute cannot be
restored in this manner.

Closing I/0O Paths

There are a number of ways that I/O paths are closed and the I/O path names rendered invalid.
Closing an I/O path cancels any ON-event actions for that [/O path. [/O path names that are not
included in a COM statement are closed at the following times:

® When they are explicitly closed; for example, ASSIGN @File TO *

® When a currently assigned [/O path name is re-assigned to a resource, the original I/O path is
closed before the new one is opened. The re-assignment can be to the same resource or a
different resource. No closing occurs when the ASSIGN statement only changes attributes
and does not include the “TO...”" clause.

® When an /O path name is a local variable within a subprogram, it is closed when the
subprogram is exited by SUBEND, SUBEXIT, RETURN <expression>, or ON <event>
RECOVER.

® When SCRATCH, SCRATCH A, or SCRATCH C is executed. any form of STOP occurs, or
an END, LOAD, or GET is executed.

I/O path names that are included in a COM statement remain open and valid during a LOAD,
GET, STOP, END, or simple SCRATCH. I/O path names in COM are only closed at the following
times:

® When they are explicitly closed; for example, ASSIGN BFile TO *
® When SCRATCH A or SCRATCH C is executed

® When a LOAD, GET, or EDIT operation brings in a program that has a COM statement that
does not exactly match the COM statement containing the open I/O path names.

Additionally, when RESET is pressed, all /O path names are rendered invalid without going
through some of the updating steps that are normally taken to close an I/O path. This is usually
not a problem, but there are rare situations which might leave file pointers in the wrong state if
their /O path is closed by a RESET. Explicit closing is preferred and recommended.

When ASSIGN is used to close either the source or destination I/0 path name of a currently active
TRANSFER, the I/O path is not actually closed until the TRANSFER is completed. When I/O path
names are closed in this manner, any pending (logged but not serviced) EOR or EOT events are
lost (they do not initiate their respective branches). With buffers’ /O path names, the I/O path
name might not be closed until two TRANSFERs (one in each direction) are completed.

ATN

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the principal value of the angle which has a tangent equal to the argu-
ment. This is the arctangent function.

numeric
O O

Example Statements

Andle=ATN(Tandent)
PRINT "Andle ="3ATN(X1)

Semantics

The value returned is REAL. If the current angle mode is DEG, the range of the result is —90
thru +90 degrees. If the current angle mode is RAD, the range of the resultis — /2 thru +7/2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

33

34

AXES

Option Required
Keyboard Executable
Programmable

Inan IF... THEN...

This statement draws a pair of axes, with optional, equally-spaced tick marks.

Y

GRAPH
Yes
Yes
Yes

(AXES)
x tick
I| spacing }

XY

y tick
spacing

y axis |
locaticILJ

x axis
location I ’

x major
count

y major
count

major 1
tick sizeJ

. Range
Item Description/Default Restrictions
x tick spacing numeric expression in current units; (see text)
Default = 0, no ticks
y tick spacing numeric expression in current units: (see text)

v axis location

X axis location

Default = O, no ticks

numeric expression specifying the location
of the y axis in x-axis units;
Default = 0

numeric expression specifying the location
of the x axis in y-axis units;
Default = 0

AXES 35

.. Range
Item Description/Default Restrictions
X major count numeric expression, rounded to an integer, 1 thru 32 767
specifying the number of tick intervals be-
tween major tick marks;
Default = 1 (every tick is major)
y major count numeric expression, rounded to an integer, 1 thru 32 767

specifying the number of tick intervals be-
tween major tick marks;
Default = 1 (every tick is major)

major tick size numeric expression in graphic display units; —
Default = 2

Example Statements
XKES 10,10
AXES XY sMidx sMidy sMaxx/10:Maxy/10

Semantics

The axes are drawn so they extend across the soft clip area. The tick marks are symmetric about
the axes, but are clipped by the soft clip area. Tick marks are positioned so that a major tick
mark coincides with the axis origin, whether or not that intersection is visible. Both axes and tick
marks are drawn with the current line type and pen. Minor tick marks are drawn half the size of
major tick marks.

The X and Y tick spacing must not generate more than 32 768 tick marks in the clip area
(including the axis), or error 20 will be generated.

If either axis lies outside the current clip area, that portion of the tick mark which extends into the
non-clipped area is drawn.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR

36

BASE

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an [F... THEN. .. Yes

This function returns the lower subscript bound of a dimension of an array. This value is always
an INTEGER. (See also OPTION BASE.)

(®

S Range
Item Description/Default Restrictions
array name name of an array any valid name
dimension numeric expression, rounded to an integer 1 thru 6;
=< the RANK of the array

Example Statements

Lowerbound=BASE(Arrav$:1)
Uprperbound(2)=BASE(A2)+SIZE(A2)-1

BDAT

See the CREATE BDAT statement.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement produces one of 64 audible tones.

(BEEP)

frequency ° seconds

BEEP

.. Range Recommended
Item Description/Default Restrictions Range
frequency numeric expression, rounded to the — 81 thru 5208
nearest tone; Default = 1220.7 Hz
seconds numeric expression, rounded to the — 0.01 thru 2.55

nearest hundredth; Default = 0.2

Example Statements
BEEP B81,38%Tone .2

BEEP

Semantics

The frequency and duration of the tone are subject to the resolution of the built in tone generator.
The frequency specified is rounded to the nearest frequency shown below. For example, any
specified frequency from 40.7 to 122.08 produces a beep of 81.38 Hz. If the frequency specified
is larger than 5167.63, a tone of 5208.32 is produced. Ifitis less than 40.69, it is considered to be
a 0 and no tone is produced.

37

38 BEEP

The frequency changes when sent to an HP 46020A keyboard. Rounding is performed by the
system to produce the number in the first column of the following table. When sent to the HP
46020A keyboard the frequencies change to the corresponding number in the second column.

Standard HP 46020A Standard HP 46020A
81.38 81.45 2685.54 2688.16
162.76 162.12 2766.92 2777.77
244.14 244.37 2848.30 2873.55
325.52 324.25 2929.68 2976.18
406.90 408.49 3011.06 2976.18
488.28 496.03 3092.44 3086.41
569.66 578.70 3173.82 3205.12
651.04 651.03 3255.20 3205.12
732.42 744.04 3336.58 3333.32
=13.80 833.33 3417.96 3472.21
895,18 905.79 3499.34 3472.21
176.56 992.06 3580.72 3623.17
1057.94 1096.49 3662.10 3623.17
1139.32 1157.40 3743.48 3787.86
1220.70 1225.49 3824.86 3787.86
1302.08 1302.08 3906.24 3968.24
1383.46 1388.88 3987.62 3968.24
1464.84 1461.98 4069.00 4166.65H
1546.22 1543.20 4150.38 4166.65
1627.60 1633.98 4231.76 4166.05
1708.98 1700.67 4313.14 4385.95
1790.36 1773.04 4394.52 4385.95
1871.74 1851.84 447590 4385.95
1953.12 1937.98 4557.28 4629.61
2034.50 2032.51 4638.66 4629.61
2115.88 2136.74 4720.04 4629.61
2197.26 2192.97 4801.42 4901.94
2278.64 2252.24 4882.80 4901.94
2360.02 2380.94 4964.18 4901.94
2441.40 2450.97 5045.56 4901.94
262278 2525.24 512694 5208.31
2604.16 2604.16 5208.32 5208.31

The resolution of the seconds parameter is .01 seconds. Any duration shorter than .005
seconds is treated as near zero. Any duration longer than 2.55 seconds is treated as 2.55
seconds.

BIN See the LOAD statement .

BINAND

Option Required None
Keyboard Executable Yes
Programmable Yes
In an I[F... THEN... Yes

This function returns the value of a bit-by-bit logical-and of its arguments.

€D 20 = EX Y0 = Exy O

. Range
Item i Description/Default | Restrictions
argument I numeric expression, rounded to an integer | —32 768 thru +32 767

Example Statements

Low_bits=BINAND(Bvte »13)
IF BINAND(Stat»3) THEN Bit_set

Semantics

The arguments for this function are represented as 16-bit two’s-complement integers. Each bit
in an argument is anded with the corresponding bit in the other argument. The results of all the
ands are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINAND(Ctrl_word:-8) clears bit 3 of
Ctrl_word without changing any other bits.

bit 15 bit 0

12 = 00000000 00001100 old Ctrl_word
-9 = 1111111111110111 mask to clear bit 3

4 = 00000000 00000100 new Ctrl_word

39

40

BINCMP

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F.. THEN... Yes

This function returns the value of the bit-by-bit complement of its argument.

CED SO S E=n N0

. Range
Item i Description/Default | Restrictions
argument | numeric expression, rounded to an integer | —32 768 thru +32 767

Example Statements

True=BINCMP(Inverse)
PRINT X sBINCMP (X

Semantics

The argument for this function is represented as a 16-bit two’s-complement integer. Each bit in
the representation of the argument is complemented, and the resulting integer is returned.

For example, the complement of —9:
bit 15 bit 0

-9 =1111111111110111
00000000 00001000 = 8

BINEOR

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the value of a bit-by-bit exclusive-or of its arguments.

€= 20 & EEn N0 = EXme 2O

. Range
[tem | Description/Default i Restrictions
argument | numeric expression, rounded to an integer | —32 768 thru +32 767

Example Statements

Toddle=BINEOR(Toddle i)
True_bvyte=BINEOR(Inverse_bvte »255)

Semantics

The arguments for this function are represented as 16-bit two’s-complement integers. Each bit
in an argument is exclusively ored with the corresponding bit in the other argument. The results
of all the exclusive ors are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINEDOR(Ctrl_wordd) inverts bit 2 of
Ctrl_word without changing any other bits.

bit 15 bit 0

12 = 00000000 00001100 old Ctrl_word
4 = 00000000 00000100 mask to invert bit 2

8 = 00000000 00001000 new Ctrl_word

41

42

BINIOR

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This function returns the value of a bit-by-bit inclusive-or of its arguments.

TR0 o O~

. Range
Item | Description/Default | Restrictions
argument I numeric expression, rounded to an integer | —32 768 thru +32 767

Example Statements

Bits_set=BINIOR(Valuel :Valuel)
Torp_.on=BINIOR(All_bits»2°13)

Semantics

The arguments for this function are represented as 16-bit two’s-complement integers. Each bit
in an argument is inclusively ored with the corresponding bit in the other argument. The results
of all the inclusive ors are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINIOR(Ctrl_wordB) sets bits 1 & 2 of
Ctrl_word without changing any other bits.

bit 15 bit O

19 = 00000000 00010011 old Ctrl_word
6 = 00000000 00000110 mask to set bits 1 & 2

23 = 00000000 00010111 new Ctrl_word

BIT

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns a 1 or O representing the value of the specified bit of its argument.

© ON TR0

. Range
Item I Description/Default | Restrictions
argument numeric expression, rounded to an integer —32 768 thru + 32 767
bit position numeric expression, rounded to an integer 0 thru 15

Example Statements

Flad=BIT{(Info:0)
IF BIT(Word:Test) THEN PRINT "Bit #"3iTesti"is set"

Semantics

The argument for this function is represented as a 16-bit two’s-complement integer. Bit O is the
least-significant bit and bit 15 is the most-significant bit. The following example reads the
controller status register of the internal HP-IB and takes a branch to ‘‘Active” if the interface is
currently the active controller.

control status
active control

100 GSTATUS 7,338 I Red 3
110 IF BIT(S5:B8) THEN Active ! Bit G

43

44

BREAK

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement directs a serial or datacomm interface to send a Break sequence.

1/0 path
GO OB

selrct code

.. Range
[tem I Description/Default | Restrictions
1/O path name name assigned to an interface select code any valid name
interface select code numeric expression, rounded to an integer 8 thru 31

Example Statements

BREAK 9
BREAK @Data.comm

Semantics

A Break sequence is a signal sent on the Data Out signal line. On the HP 98626 Serial Interface, a
logic High of 400-ms duration followed by a logic Low of 60-ms duration is sent. If an outbound
TRANSFER is taking place through this interface, the Break is sent after the TRANSFER is
finished; the Break is sent immediately if an inbound TRANSFER is taking place. On the HP
98628 Datacomm Interface, the Break is sent immediately; the operation is identical to writing to
CONTROL Register 6.

If the interface is not a serial-type interface, error 170 is reported. If an I/O path name assigned to
a device selector with addressing information, error 170 is reported. If the specified interface is
not present, error 163 is reported.

BUFFER

See the DIM, REAL, INTEGER, COM, ASSIGN, SUB, and DEF FN statements.

BYTE

See the ASSIGN statement.

Option Required
Keyboard Executable
Programmable

In an IF...THEN...

None
Yes
Yes
Yes

CALL

This statement transfers program execution to the specified SUB or CSUB subprogram and may
pass items to the subprogram. SUB programs are created with the SUB statement. (Also see the

ON... statements.)

subprogram

X

name

pass
parameters

pass parameters:

(D

[

U

I1/0 path
e o}

variable -
name
ST e T L
-l

name

string of numeric
1 array element

Passed by Reference T

Passed by Value 1

{3_”

string of numeric
array element

o] | -

variable
name

—-lsubstr‘ingI

/

.

1 -loperator&

string expressions containing
dyadic operators, or

monadic
functions

monadic
functions

string expressions containing
operators, dyadic operators, or

—

I__.‘

[Thumeric | y,

'|c0nstant|

45

46 CALL

Item

Description/Default

Range
Restrictions

subprogram name

[/O path name

variable name

name of the SUB or CSUB subprograms to be
called

name assigned to a device, devices, or mass stor-
age file

name of a string or numeric variable

any valid name

any valid name (see

ASSIGN)

any valid name

substring string expression containing substring notation (see Glossary)
literal string constant composed of characters from the —
keyboard, including those generated using the
ANY CHAR key

numeric quantity expressed using numerals, and —
optionally a sign, decimal point, or exponent
notation

numeric constant

Example Statements

CALL Process(Refs{Yalue) sBPath)
CALL Transform{(Array(*))
IF Flay THEN CALL Serecial

Semantics

A subprogram may be invoked by a stored program line, or by a statement executed from the
keyboard. Invoking a subprogram changes the program context. Subprograms may be invoked
recursively. The keyword CALL may be omitted if it would be the first word in a program line.
However, the keyword CALL is required in all other instances (such as a CALL from the
keyboard and a CALL in an IF... THEN... statement).

The pass parameters must be of the same type (numeric, string, or /O path name) as the
corresponding parameters in the SUB or CSUB statement. Numeric values passed by value are
converted to the numeric type (REAL or INTEGER) of the corresponding formal parameter.
Variables passed by reference must match the corresponding parameter in the SUB statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

I there is more than one subprogram with the same name, the lowest-numbered subprogram is
invoked by a CALL.

Program execution generally resumes at the line following the subprogram CALL. However, if
the subprogram is invoked by an event-initiated branch (ON END, ON ERROR, ON INTR, ON
KEY, ON KNOB, or ON TIMEOUT), program execution resumes at the point at which the
event-initiated branch was permitted.

When CALL is executed from the keyboard, the current state of the computer determines the
computer’s state when the subprogram executes a STOP. If the computer was paused or
stopped when CALL was executed, its state does not change. If the computer was running
when the CALL was executed, the program pauses at the program line which was interrupted
by the CALL for the subprogram, and resumes execution at that point after the subprogram is
exited.

See the SELECT...CASE construct.

CASE

47

48

CAT

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement lists all or specified portions of the contents of a mass storage directory or
information regarding a specified PROG file. (If using CAT with SRM, also refer to the ‘“‘SRM”’

section of this manual.)

CAT

media
specifier

file
specifier

catalog
device selector

o sELECTchﬁﬁ?.éEZi"Q(s) b

e SKIP)= a';“’,’:';"igs |- ko

(T} o e

" NO HEADER

MS

literal form of file specifier:

file "
name
protect
code msus

CAT 49

Item Description/Default Re?t?il:ft;ieons

media specifier string expression:; (see MASS
Default = MASS STORAGE IS device STORAGE IS)

file specifier string expression (see drawing)

catalog device selector

string array name
beginning character(s)
number of files

return variable name

msus

file name

protect code

numeric expression, rounded to an integer:

Default=PRINTER IS device

name of a string array (see text)

string expression

numeric expression, rounded to an integer
name of a numeric variable

literal

name of a file

literal; first two non-blank characters are signifi-

cant

(see Glossary)

any valid name
1 to 10 characters

1 thru 32 767

any valid name

(see MASS
STORAGE IS)

any valid file name

“>" not allowed

50 CAT

Example Statements

CAT

CAT TO #701

CAT ":INTERNAL +4 1"

CAT "Progi"

CATSSELECT "D"sSKIP Ten_files
CAT TO Directorv$(*)iND HEADER

Semantics

A directory entry is listed for each file on the media. The catalog shows the name of each file,
whether or not it is protected, the file’s type and length, the number of bytes per logical record.
The types recognized in BASIC are ASCII, BDAT (BASIC data), BIN (binary program), PROG
(BASIC program). or SYSTM (language system).

CAT to a Device

A protected file has an asterisk in the PRO column entry when the catalog is directed to a device.
An ID number is listed for any unrecognized file types. The starting location (address) is also
shown. The standard catalog format is shown below.

s INTERNAL
YOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS

SYSTEM_BAS SYSTM 1024 256 16
AUTOST PROG 3 256 1043

CAT to a String Array (Requires MS)

The catalog can be sent to a string array. The array must be one-dimensional, and each element
of the array must contain at least 80 characters for a directory listing or 45 characters for a
PROG file listing. If the directory information does not fill the array, the remaining elements are
set to null strings. If the directory information ‘“‘overflows” the array, the overflow is not
reported as an error. When a CAT of a mass storage directory is sent to a string array, the
catalog’s format is different than when sent to a device. This format (the SRM directory format)
is shown below. Protect status is shown by letters, instead of an asterisk. An unprotected file has
the entry MRW in the PUB ACC (public access) column. A protected BDAT file has no entry in
that column. Other types of protected files show Rk (read access). In addition to the standard
information, this format also shows 0PEN in the OPEN STAT column when a file is currently
assigned.

tINTERNAL s 4
LABEL: B9B36
FORMAT: LIF

AVATILABLE SPACE: 11

5¥8 FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEY TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
SYSTEM_BAS 1 98BXB SYS8THM 1024 256 MR W

AUTOST 1 98X6 PROG 5 256 MR W

CAT 51

To aid in accessing the catalog information in a string, the following table gives the location of
some important fields in the string.

Field | Position (in String)
File Name 1 thru 21
File Type 32 thru 36
Number of Records 38 thru 45
Record Length 47 thru 54

Catalogs of PROG Files (Requires MS)

If the file specifier is for a PROG file, the following information is included: a list of binary
programs in the file, a list of all contexts in the program, and each context’s type and size. If any
binary programs have a version code different from the BASIC version code, both a warning and
the version codes of the binary program and BASIC system are included with the listing. CAT of a
PROG file uses the same format, whether the destination is a device or a string.

SAMPLE

NAME SIZE TYPE

MAIN 692 BASIC

Esc 924 COMPILED UTILITY
FNDummy 166 BASIC

AVAILABLE ENTRIES = O

Partial Catalogs (Requires MS)

Including the SELECT option directs the computer to list only the files that begin with or match
the value of the specified string expression. If the string expression contains more than 10
characters, only the first 10 are used. If SELECT is not included, all files are sent to the destination
(if possible).

Including the SKIP option directs the computer to skip the specified number of (selected) file
entries before sending entries to the destination. If SKIP is not included, no files are skipped.

How Many Entries? (Requires MS)

Including COUNT provides a means of determining the number of lines sent to the destination.
The variable that follows COUNT receives the sum of the number of lines in the catalog header
(and trailer for PROG files) plus the number of selected files; keep in mind that the number of
selected files includes the number of files sent to the destination plus the number of files skipped,
if any. Catalogs sent to external devices have a five-line header; catalogs sent to string arrays have
a seven-line header; and catalogs of individual PROG files have a three-line header and a
one-line trailer. If an “‘overflow’’ of a string array occurs, the count is set to the number of
string-array elements plus the number of files skipped. If a value of 0 is returned, no entries were
sent to the destination (i.e., the number of files skipped is greater than or equal to the number of
files selected).

Suppressing the Heading (Requires MS)

Including the NO HEADER option directs the computer to omit the directory header (and trailer)
that would otherwise be included. If NO HEADER is specified, the lines of the header (and trailer)
are then omitted from the COUNT variable.

CHANGE

Option Required PDEV
Keyboard Executable Yes
Programmable No

This command allows you to search for and replace one character sequence with another while
editing a program.

CCHANGE}-'I toelxdt H T0 H tneexwt l[J T o :‘]
;) ALL
beginning
line number
1o tater
Item Description/Default Range
p Restrictions

old text literal —
new text literal —
beginning line number integer constant identifying a program line 1to 32 766
beginning line label name of a program line any valid name
ending line number integer constant identifying a program line 110 32 766
ending line label name of a program line any valid name

Example Statements

CHANGE "Row" TO "Column"™ IN 25603310

CHANGE "November" TO "December"3iALL

CHANGE "TREE" TO "© (A “‘delete” function)
CHANGE "his car" TO "his ""garp®""" (Quotes allowed)

CHANGE 53

Semantics

The CHANGE command allows you to find all occurrences of a specified character sequence and
replace it with another. This occurs whether they are variable names, keywords, literals, or line
numbers. Note that if line numbers are changed, unexpected results may occur.

If ALL is specified, all legal changes are made automatically, without additional keyboard
intervention. If ALL is not specified, the computer finds each occurrence, tentatively changes Old
String to New String, and asks you to confirm the change. You confirm a particular change by
pressing (ENTER) or (_RETURN), and bypass a particular change by pressing (CONTINUE), ((CONT),
(_CLEAR LINE) (ENTER) or (SHIFT) (_CLEAR LINE) (ENTER) on HP 46020A. When the specified range is
exhausted or the end of the program is reached, the CHANGE command is terminated and the
message ‘‘<New String> not found is displayed. and exit from the CHANGE
command. confirms a change and exits the CHANGE mode.

During the course of a CHANGE, if a syntax error is caused by the altered text, the appropriate error
message is displayed. When the line is corrected and entered, the CHANGE command continues.

If a change causes a line to become longer than the maximum length of a line of code, a syntax error is
generated, the offending change will not take place, and the CHANGE command is aborted. The
CHANGE command will also be aborted if a replacement results in the alteration of a line number,
although the line whose number was changed now exists in two locations.

If the starting line number does not exist, the next line is used. If the ending line number does not exist,
the previous line is used. If a line label doesn’t exist, an error occurs and the CHANGE is cancelled.

If there were no occurrences found, the cursor is left at the end of the first line searched. If one or more
occurrences were found, the cursor is left at the end of the line containing the last occurrence.

CHANGE is not allowed while a program is running; however, it may be executed while a program is
paused. The program is continuable if it has not been altered by pressing (ENTER) or (DEL LN).

While in the CHANGE mode, keyboard execution is only possible with the (_EXECUTE) key. Using
ENTER) or (_RETURN J causes an error.

54

CHECKREAD

Option Required MS
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN. . Yes

This statement enables or disables optional read-after-write verification of data sent to mass
storage media. (If using CHECKREAD with SRM, also refer to the “SRM’ section of this
manual.)

CHECKREAD

Example Statements

IF Important_data THEN CHECKREAD ON
CHECKREAD OFF

Semantics

Executing CHECKREAD ON directs the computer to perform a read-after-write verification of
every sector of data sent to mass storage files by any of the following statements (executed in any
program context):

COPY PRINT LABEL RE-SAVE

CREATE ASCII PROTECT STORE

CREATE BDAT PURGE RE-STORE

OUTPUT RENAME TRANSFER
SAVE

If the bit-by-bit comparison does not detect an exact match, an error is reported.
Executing CHECKREAD OFF cancels this optional verification.

Keep in mind that using this feature may increase data reliability, but at the expense of reduced
disc-access speed and increased disc wear.

CHECKREAD does not affect PRINTER IS file or PLOTTER IS file.

CHR$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function converts a numeric value into an ASCII character. The low order byte of the
16-bit integer representation of the argument is used; the high order byte is ignored. A table of
ASCII characters and their decimal equivalent values may be found in the back of this book.

DO EEEIO

. Range Recommended
Item | Description/Default | Restrictions Range
argument numeric expression, rounded to an integer —32 768 thru 0 thru 255
+32 767

Example Statements

A$CMarkeril1=CHR$(Digit+128)
Esc$=CHR$(27)

55

56

CLEAR

Option Required 10
i Keyboard Executable Yes
Programmable Yes
Inan [F... THEN. . Yes

This statement clears HP-IB devices or Data Communications interfaces.

I/0 path
name

device
selector

CLEAR

. Range
Item | Description/Default Restrictions
/O path name name assigned to a device or devices any valid name (see ASSIGN)
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements
CLEAR 7

CLEAR Isc*100+Address
CLEAR BSource

Semantics

HP-IB Interfaces

This statement allows the computer to put all or only selected HP-IB devices into a defined,
device-dependent state. The computer must be the active controller to execute this statement.
When primary addresses are specified, the bus is reconfigured and the SDC (Selected Device
Clear) message is sent to all devices which are addressed by the LAG message.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controll DCL UNL DCL UNL
ontroller LAG LAG
SDC SDC
Not Active Error
Controller

Data Communications Interfaces
CLEAR may also be directed to a Data Communications interface. The result is to clear the
interface buffers; if the interface is suspended. a disconnect is also executed.

Option Required GRAPH CLIP
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement redefines the soft clip area and enables or disables the soft clip limits.

right bottom top
© s I 20 O s FH e O e Il oy e

s Range
Item Description/Default Restricst;ions
left edge numeric expression in current units —_—
right edge numeric expression in curent units —
bottom edge numeric expression in current units —
top edge numeric expression in current units —

Example Statements

CLIP LeftsRight 0,100
CLIP OFF

Semantics

Executing CLIP with parameters allows the soft clip area to be changed from the boundary set by
PLOTTER IS and VIEWPORT to the soft clip limits. If CLIP is not executed, the area most
recently defined by either VIEWPORT or the PLOTTER IS statement is the clipping area. All

plotted points, lines or labels are clipped at this boundary.

The hard clip area is specified by the PLOTTER IS statement. The soft clip area is specified by the
VIEWPORT and CLIP statements. CLIP ON sets the soft clip boundaries to the last specified
CLIP or VIEWPORT boundaries, or to the hard clip boundaries if no CLIP or VIEWPORT has
been executed. CLIP OFF sets the soft clip boundaries to the hard clip limits.

CMD

See the SEND statement.

COLOR

See the AREA and SET PEN statements. See the PLOTTER IS statement for “‘COLOR MAP”’.

57

58

COM

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN. .. No

This statement dimensions and reserves memory for variables in a special “‘common’” memory
area so more than one program context can access the variables.

o declared

COM I items | 'I
block
name

Expanded diagram

COM -

block
name

@

. _[numeric - 1
el '| name i e

X

V) -

string
EESE

((string
length

I/0 path J
name

COM

.. Range
Item Description/Default Restrictions
block name name identifying a labeled COM area any valid name
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
lower bound integer constant; —32 767 thru +32 767
Default = OPTION BASE value (0 or 1) (see “array’’ in Glossary)
upper bound integer constant —32 767 thru +32 767
(see “‘array” in Glossary)
string length integer constant 1 thru 32 767
/O path name narne assigned to a device, devices, mass storage any valid name(see
file, or buffer ASSIGN})

Example Statements

COM XY 2

COM /Graph/ Title% BDevice»INTEGER Points (%)
COM INTEGER IsJ:REAL Arrav(-12B:127)

COM INTEGER Buf(i127) BUFFER,C$[2361 BUFFER

Semantics

Storage for COM is allocated at prerun time in an area of memory which is separate from the data
storage used for program contexts. This reserved portion of memory remains allocated until
SCRATCH A or SCRATCH C is executed. Changing the definition of the COM space is
accomplished by a full program prerun. This can be done by:

® Pressing the (RUN) or (STEP) key when no program is running.

e Executing a RUN command when no program is running.
® Executing any GET or LOAD from a program.
e Executing a GET or LOAD command that tells program execution to to begin.

When COM allocation is performed at prerun, the new program’s COM area is compared against
the COM area currently in memory. When comparing the old and new areas, the computer looks
first at the types and structures declared in the COM statements. If the “‘text’” indicates that there
is no way the areas could match, then those areas are considered mismatched. If the declarations
are consistent, but the shape of an array in memory does not match the shape in a new COM
declaration, the computer takes the effect of REDIM into account. If the COM areas could be
matched by a REDIM, they are considered to be in agreement. When this happens, the treatment
of the arrays in memory depends upon the program state. If the COM matching occurred because
of a programmed LOADSUB, the arrays in memory keep their current shape. If the COM
matching occurred for any other reason (such as RUN or programmed LOAD), the arrays in
memory are redimensioned to match the declarations. Any variable values are left intact. All
other COM areas are rendered undefined, and their storage area is not recovered by the
computer. New COM variables are initialized at prerun: numeric variables to 0, string variables to
the null string.

59

Each context may have as many COM statements as needed (within the limits of computer
memory), and COM statements may be interspersed between other statements. If there is an
OPTION BASE statement in the context, it must appear before COM statement. COM variables
do not have to have the same names in different contexts. Formal parameters of subprograms are
not allowed in COM statements. A COM mismatch between contexts causes an error.

If a COM area requires more than one statement to describe its contents, COM statements
defining that block may not be intermixed with COM statements defining other COM areas.

Numeric variables in a COM list can have their type specified as either REAL or INTEGER.
Specifying a variable type implies that all variables which follow in the list are of the same type.
The type remains in effect until another type is specified. String variables and I/O path names are

considered a type of variable and change the specified type. Numeric variables are assumed to be
READ unless their type has been changed to INTEGER.

COM statements (blank or labeled) in different contexts which refer to an array or string must
specify it to be of the same size and shape. The lowest-numbered COM satement containing an
array or string name must explicitly specify the subscript bounds and/or string length. Subse-
quent COM statements can reference a string by name only or an array only by using an asterisk
specifier.

No array can have more than six dimensions. The total number of elements is limited by the
computer’s memory size. The lower bound value must be less than or equal to the upper bound
value. The default lower bound is specified by the OPTION BASE statement.

Any LOADSUB which attempts to define or change COM areas while a program is running
generates ERROR 145.

Unlabeled or Blank COM

Blank COM does not contain a block name in its declaration. Blank COM (if it is used) must be
created in a main context. The main program can contain any number of blank COM statements.
Blank COM areas can be accessed by subprograms, if the COM statements in the subprograms
agree in type and shape with the main program COM statements.

Labeled COM
Labeled COM contains a name for the COM area in its declaration. Memory is allocated for
labeled COM at prerun time according to the lowest-numbered occurrence of the labeled COM

statement. Each context which contains a labeled COM statement with the same label refers to
the same labeled COM block.

Declaring Buffers
To declare COM variables to be buffers, each variable’s name must be followed by the keyword
BUFFER,; the designation BUFFER applies only to the variable which it follows.

61

Option Required None CONT

Keyboard Executable Yes
Programmable No
Inan IF.. THEN... No

This command resumes execution of a paused program at the specified line. (For information
about CONT as a secondary keyword, see the TRANSFER statement.)

('coNT)

. Range
Item Description/Default Restrictions
line number integer constant identifying a program line; 1 thru 32 766
Default = next program line
line label name identifying a program line any valid name

Example Statements

CONT 550
CONT Sort

Semantics

Continue can be executed by pressing the (CONTINUE) key or by typing a CONT command and
pressing (EXECUTE), (ENTER) or (RETURN). Variables retain their current values whenever CONT is
executed. CONT causes the program to resume execution at the next statement which would have
occurred unless a line is specified.

When a line label is specified, program execution resumes at the specified line, provided that
the line is in either the main program or the current subprogram. If a line number is specified,
program execution resumes at the specified line, provided that the line is in the current program
context. If there is no line in the current context with the specified line number, program
execution resumes at the next higher-numbered line. If the specified line label does not exist in
the proper context, an error results.

62

CONTROL

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement sends control information to an interface or to the internal table associated with an
1/0 path name. (This keyword is also used in PASS CONTROL.)(If using CONTROL with SRM,
also refer to the ““'SRM”’ section of this manual.)

interface
select code

I/0 path
name

CONTROL

register
number

. Range Recommended
Item Description/Default Restrictions Range
interface select numeric expression, rounded to an integer 1 thru 40 1 thru 32
code (interface
dependent)

/O path name

name assigned to a device, devices, or

any valid name

mass storage file (see ASSIGN)
register number numeric expression, rounded to an integer; interface —
Default = 0 dependent
control word numeric expression, rounded to an integer - 2%1 thru 0 thru 65 535
+231 1 (interface
dependent)

Example Statements

CONTROL BRand_files7iFile_lendgth
CONTROL 13iRowsColumn
CONTROL 7.:33289

CONTROL 63

Semantics

When the Destination is an I/O Path Name

The only time CONTROL is allowed to an /O path name is when the I/O path name is assigned to
a BDAT file or a buffer. I/O path names have an association table that can be thought of as a set of
registers. Control words are written to the association table, starting with the specified “‘register”’
and continuing in turn through the remaining ‘‘registers”” until all control words are used.The
number of control words must not exceed the number of ‘“‘registers’”” available. Register assign-
ments can be found in the Interface Registers section at the back of the book.

When the Destination is an Interface

Control words are written to the interface registers, starting with the specified register number,
and continuing in turn through the remaining registers until all the control words are used. The
number of control words must not exceed the number of registers available. Register assign-
ments can be found in the Interface Registers section at the back of the book.

CONVERT

See the ASSIGN statement.

64

COPY

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement allows copying of individual files or entire discs. (If using COPY with SRM, also
refer to the “SRM”’ section of this manual.)

old file new file

specifier specifier
0ld mass storage T0 new mass storage
unit specifier unit specifier

literal form of file specifier:

file 0
name
protect
code msus

L. Range

Item Description/Default Restrictions
file specifier string expression (see drawing)
mass storage unit string expression (see drawing)
specifier
file name literal any valid file name
protect code literal: first two non-blank characters are signifi- “>" not allowed

cant
msus literal (see MASS
STORAGE IS)

Example Statements

COPY "OLD_FILE" TO "New_file"

COPY File$ TO File$&Msuss

COPY "sINTERNAL »4,0" TO ":INTERNAL 41"
COPY Int.disc$ TO Ext_disc$

Semantics

Copying a File

The contents of the old file is copied into the new file, and a directory entry is created. A protect
code, to prevent accidental erasure, may be specified for the new file. The old file and the new file
can exist on the same device, but the new file name must be unique.

COPY

COPY is canceled and an error is returned if there is not enough room on the destination device
or if the new file name already exists in the destination directory.

If the mass storage unit specifier (msus) is omitted from a file specifier, the MASS STORAGE IS
device is assumed.

Copying an Entire Disc

Discs can be duplicated if the destination media is as large as, or larger than, the source media.
COPY from a larger capacity media to a smaller capacity media is only possible when the amount
of data on the larger will fit on the smaller.. The directory and any files on the destination media
are destroyed. The directory size on the destination media becomes the same size as that on the
source media.

When copying a disc, msus’s must be specified and unique. File names are not allowed.
Disc-to-disc copy time is dependent on media type and interleave factors.

65

66

COPYLINES

Option Required PDEV
Keyboard Executable Yes
Programmable No
Inan IF.. THEN. . No

This command allows you to copy one or more contiguous program lines to another location

while editing a program.
target
line number
l'

(COPYLINES } -
line label

| ending
] 1line number

ending
line label

T0

beginning
line numtber
beginnirg

line label

Item Description/Default Regi:irgt;i(:)ns
beginning line number integer constant identifying program line 1to 32 766
beginning line label name of a program line any valid name
ending line number integer constant identifying program line 1 to 32 766
ending line label name of a program line any valid name
target line number integer constant identifying program line 1to 32 766
target line label name of a program line any valid name

Example Statements

COPYLINES 1200 TO 2350

COPYLINES 100,230 TO Latelt

COPYLINES Util_start,Util_end TO 16340

COPYLINES 67

Semantics
If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copied program segment.
Copied lines are renumbered if necessary. The code (if any) which is “‘pushed down’’ to make
room for the copied code is renumbered if necessary.

Line number references to the copied code are updated as they would be for a REN command,
with these exception: Line number references in lines not being copied remain linked to the source
lines rather than being renumbered. Also. references to non-existent lines are renumbered as if the
lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line number must be
greater than any existing line number.

If you try to copy a program segment to a line number contained in the segment, an error will
result and no copying will occur.

If the starting line number does not exist, the next line is used. If the ending line number does not
exist, the previous line is used. If a line label doesn’t exist, an error occurs and no copying occurs.

If an error occurs duringa COPYLINES (for example, a memory overflow), the copy is termin-
ated and the program is left partially modified.

68

COS

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN. .. Yes

This function returns the cosine of the argument. The range of the returned real value is — 1
thru +1.

s Range
Item Description/Default Restrictions
argument numeric expression in current units of angle absolute value less than:

1.708 312 772 2 E+ 10 deg.
or in radians:
2.981 568244 292 04 E +8

Example Statements

Cosine=C0OS(Andle)
PRINT COS(X+4d5)

COUNT

See the CAT and TRANSFER statements.

CREATE ASCII

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement creates an ASCII file on the mass storage media. (If using CREATE ASCII with
SRM, also refer to the “SRM”’ section of this manual.)

fil b f
(create asci)—{. 7.

literal form of file specifier

file "
name
protect
code msus

Item Description/Default Rels.zt?i[::st;ieons
file specifier string expression {see drawing)
file name literal any valid file name
msus literal (see MASS

STORAGE 1S)
number of records numeric expression, rounded to an integer 1thru?* -1

Example Statements

CREATE ASCII "TEXT" 100
CREATE ASCII Name$&":INTERNAL":Lendth

Semantics

CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
CREATE ASCII does not open the file. Opening of files is done by the ASSIGN statement. The
physical records of an ASCII file have a fixed length of 256 bytes; logical records have variable
lengths, which are automatically determined when the OUTPUT, SAVE, or RE-SAVE state-
ments are used. In the event of an error, no directory entry is made and the file is not created.

69

70

CREATE BDAT

This statement creates a BDAT file on the mass storage media. (If using CREATE BDAT with

Option Required

Keyboard Executable
Programmable
Inan [F... THEN. .

SRM, also refer to the “SRM’’ section of this manual.)

(create BoaT . [F.

number N
of records

record
size

literal form of fiie specifier

file o
name \\J/
protect X
code msus

.. Range
Item Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name

protect code

msus

number of records

record size

literal; first two non-blank characters are signifi-

cant

literal

numeric expression, rounded to an integer

numeric expression. rounded to next even inte-

ger (except 1). Specifies bytes/record.
Default = 256

Example Statements

CREATE BDAT
CREATE BDAT

"Georde" »4d8
"Special<PCx"sLength,128

CREATE BDAT Name$BMsus$sBrytesl

Semantics

CREATE BDAT creates a new BDAT file and directory entry on the mass storage media.
CREATE BDAT does not open the file. Opening of files is done by the ASSIGN statement. If a
protect code is included after the file name, the first two characters become the protect code of
the file. In the event of an error, no directory entry is made and the file is not created. A sector is
created at the beginning of the file for system use. This sector cannot be accessed by BASIC

programs.

“ " not allowed

(see MASS
STORAGE 1S)

1 thru 2" - 256
1 thru 65 534

None

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This INTEGER function returns 1, the device selector of the alpha display.

CRY

Example Statements

PRINTER IS CRT
ENTER CRTiArrav (%)

CRT

71

72

CSIZE

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan [F... THEN... Yes

This statement sets the size and aspect (width/height) ratio of the character cell used by the
LABEL and SYMBOL statements.

CSIZE height >

X

O
ratio
Item Description/Default Range
P Restrictions
height numeric expression; Default = 5 —
width/height ratio numeric expression; Default = 0.6 —

Example Statements

CSIZE 10
CSIZE SizesWidth

Semantics

At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GDUs), and the aspect
ratio is 0.6 (width = 3 GDUs, or 0.6 x 5 GDUs). A negative number for either parameter
inverts the character along the associated dimension. The drawing below shows the relation
between the character cell and a character.

Zharacter in a Character Cell

CSUB

This keyword stands for “‘Compiled SUBprogram’’. CSUB statements are created in Pascal using
a special CSUB preparation utility. They are loaded using the LOADSUB statement and can be
deleted using the DELSUB statement. When viewed in BASIC’s edit mode, these subprograms
look like SUB statements, except for the keyword. They are invoked with CALL, just like normal
SUB subprograms.

Because of their special nature, certain rules must be followed when editing a program containing
CSUB statments. These lines will not be recognized if entered in BASIC (they must be created in
Pascal). Therefore, any operation which requires the line to be checked for proper syntax will fail.
This includes such operations as GET, MOVELINES, and the (_EXECUTE), (ENTER), (_RETURN) keys.
Operations which do not check syntax are allowed. This includes things like scrolling and re-
numbering.

Sometimes a CSUB will appear as multiple CSUB statements because of multiple entry points. In
these cases, the group of statements cannot be broken: you cannot insert a comment line between
 the statements, delete a single statement in the group, or interfere with the order in any way.

CSUM

See the MAT statement.

CYCLE

See the OFF CYCLE and the ON CYCLE statements.

73

74

DATA

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... No

This statement contains data which can be read by READ statements. (For information about
DATA as a secondary keyword, see the SEND statement.)

(N
{)
(bata) -
numeric

literal

Ol O

Item Description/Default

|

Range
Restrictions

numeric constant numeric quantity expressed using numerals, —
and optionally a sign, decimal point, or
exponent notation

literal string constant composed of characters from _—
the keyboard, including those generated us-
ing the ANY CHAR key

Example Statements

DATA 1,1.414,1,732,2
DATA wordlswordZsword3
DATA "ex-rpoint(!)"y"quote("")" s "commal)"

Semantics

A program or subprogram may contain any number of DATA statements at any locations.
When a program is run, the first item in the lowest numbered DATA statement is read by the
first READ statement encountered. When a subprogram is called, the location of the next item
to be read in the calling context is remembered in anticipation of returning from the subpro-
gram. Within the subprogram, the first item read is the first item in the lowest numbered DATA
statement within the subprogram. When program execution returns to the calling context, the
READ operations pick up where they left off in the DATA items.

DATA 75

A numeric constant must be read into a variable which can store the value it represents. The
computer cannot determine the intent of the programmer; although attempting to read a string
value into a numeric variable will generate an error, numeric constants will be read into string
variables with no complaint. In fact, the computer considers the contents of all DATA state-
ments to be literals, and processes items to be read into numeric variables with a VAL function,
which can result in error 32 if the numeric data is not of the proper form (see VAL).

Unquoted literals may not contain quote marks (which delimit strings), commas (which delimit
data items), or exclamation marks (which indicate the start of a comment). Leading and trailing
blanks are deleted from unquoted literals. Enclosing a literal in quote marks enables you to
include any punctuation you wish, including quote marks, which are represented by a set of two
quote marks.

76

DATE

Option Required
Keyboard Executable

Programmable

In an IF...THEN...

CLOCK
Yes
Yes
Yes

This function converts the formatted date (DD MMM YYYY) into a numeric value used to set the

clock.

0 formatted date |—>@-—>

literal form of formatted date:

—P@—D{ day I—-ldelimiter"—-Imonth I——-ldelimlter‘]—bi year l—b@-—'

Range

Item Description/Default Restrictions

Recommended
Range

formatted date string expression (see drawing)

day integer constant 1 thru the
end-of-month

month literal; letter case ignored JAN, FEB,
MAR, APR,

MAY, JUN,
JUL, AUG,
SEP, OCT,
NOV, DEC

year integer constant —1469 899
thru

1 469 899

delimiter literal; single character (see text)

(see text)

1900 thru
2079

space

DATE 77

Example Statements

PRINT DATE("2B MAR 1982")
SET TIMEDATE DATE("1 Jan 1983")
Davs=(DATE("1 JAN 1983")-DATE("11 NOY 1982")) DIV B8B400

Semantics

Using a value from the DATE function as the argument for SET TIMEDATE will set the clock to
midnight on the date specified. Results from the DATE and TIME functions must be combined to
set the date and time of day.

If the DATE function is used as an argument for SET TIMEDATE to set the clock, the date must be
in the range: 1 Mar 1900 thru 4 Aug 2079.

Specifying an invalid date, such as the thirty-first of February, will result in an error.
Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as

delimiters between the day, month and year. However, any non-alphanumeric character, except
the negative sign (—), may be used as the delimiter.

78

DATES$

Option Required CLOCK
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function formats a number of seconds as a date (DD MMM YYYY).

@O 0

Item Description/Default Ra-ng.e Recommended
Restrictions Range
seconds numeric expression -4.623 683 256 E+13 2086629 12E+11
thru thru
4.653 426 3350399 E+13 2.143 252 224 E+11

Example Statements

PRINT DATE®(TIMEDATE)
DISP DATE$(2.112520608E+11)

Semantics

The date returned is in the form: DD MMM YYYY, where DD is the day of the month, MMM is the
month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASClI spaces delimit the day, month, and
year.

The first letter of the month is capitalized and the rest are lowercase characters.

Years less than the year O are expressed as negative years.

DEALLOCATE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement deallocates memory space reserved by the ALLOCATE statement.

()

/-
(oEALLOCATE varieeTe | m
L6

i Range
Item | Description/Default | Restrictions
variable name | name of an array or string variable I any valid name

Example Statements

DEALLOCATE A%,B%,C%
DEALLOCATE Arrav (%)

Semantics

Memory space reserved by ALLOCATE exists in the same section of memory as that used by
ON-event statements. Since entries in this area are ‘‘stacked” as they come in, space for
variables which have been DEALLOCATED may not be available immediately. It will not be
available until all the space ‘‘above it”’ is freed. This includes variables allocated after it, as well
as ON-event entries. Exiting a subprogram automatically deallocates space for variables which
were allocated in that subprogram.

Strings and arrays must be deallocated completely. Deallocation of an array is requested by the
(*) specifier.

Attempting to DEALLOCATE a variable which is not currently allocated in the current context
results in an error. When DEALLOCATE is executed from the keyboard, deallocation occurs
within the current context.

DEF FN

Option Required None
Keyboard Executable No
Programmable Yes
In an [F.. THEN. . No

This statement indicates the beginning of a function subprogram. It also indicates whether the
function is string or numeric and defines the formal parameter list.

function | -l
CED RS >
parameter
list
pragram
seygment

(RETURN

Ncte: A user—-de*i1ned function
may contain an, number of
RE TURN statemen:ts

rumer 1c
ex;ression

strang
exXress10n

program
segment
FNEND

parameter list:

REAL (%)
required INTEGER BUFFER
s parameters
@ 1/0 path J
name

L
(N
; { O/ 1
1
OPTIONAL o numeric L 4
optional BUFFER
r parameters INTEGER

string

$ (0)—
@ 1/0 path J

L name

DEF FN 81

. Range
Item Description/Default Restrictions

function name name of the user-defined function any valid name
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
[/O path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)
program segment any number of contiguous program lines not —

containing the beginning or end of a main

program or subprogram

Example Statements

DEF FNTrim$(Stringd#$)
DEF FNTransform(@Printer»INTEGER Arrav (%) ,0PTIONAL Text%$)

Semantics

User-defined functions must appear after the main program. The first line of the function must
be a DEF FN statement. The last line must be an FNEND statement. Comments after the
FNEND are considered to be part of the function.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the user-defined function is invoked (see FN). Parameters to the right of OPTIONAL are
optional, and only need to be supplied if they are needed for a specific operation. Optional
parameters are associated from left to right with any remaining pass parameters until the pass
parameter list is exhausted. An error is generated if the function tries to use an optional
parameter which did not have a value passed to it. The function NPAR can be used to deter-
mine the number of parameters supplied by the function call.

Variables in a subprogram’s formal parameter list may not be declared in COM or other
declaratory statements within the subprogram. A user-defined function may not contain any
SUB statements or DEF FN statements. User-defined functions can be called recursively and
may contain local variables. A unique labeled COM must be used if the local variables are to
preserve their values between invocations of the user-defined function.

82 DEF FN

The RETURN < expression> statement is important in a user-defined function. If the program
actually encounters an FNEND during execution (which can only happen if the RETURN is
missing or misplaced), error 5 is generated. The <expression> in the RETURN statement must
be numeric for numeric functions, and string for string functions. A string function is indicated
by the dollar sign suffix on the function name.

The purpose of a user-defined function is to compute a single value. While it is possible to alter
variables passed by reference and variables in COM, this can produce undesirable side effects,
and should be avoided. If more than one value needs to be passed back to the program, SUB
subprograms should be used.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER in both the
formal parameter list and the calling context.

DEG

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement selects degrees as the unit of measure for expressing angles.

Semantics

All functions which return an angle will return an angle in degrees. All operations with param-
eters representing angles will interpret the angle in degrees.

A subprogram “‘inherits’”’ the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context. If no angle mode is specified in a program, the default is radians (see RAD).

83

84

DEL

Option Required None
Keyboard Executable Yes
Programmable No
Inan [F... THEN... No

This command deletes program lines.

o ending line
DEL number

beginning

line label

ending line
label

.. Range
Item Description/Default Restrictions
beginning line | integer constant identifying a program line 1 thru 32 766
number
beginning line label | name of a program line any valid name
ending line number | integer constant identifying a program line 1 thru 32 766
ending line label name of a program line any valid name

Example Statements

DEL 15
DEL Sort »9999

Semantics

DEL cannot be executed while a program is running. If DEL is executed while a program is
paused, the computer changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line which has
the label. If the label does not exist, error 3 is generated. An attempt to delete a non-existent
program line is ignored when the line is specified by a line number. An error results if the ending
line number is less then the beginning line number. If only one line is specified, only that line is
deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the state-
ments delimiting the beginning and ending of the subprogram (DEF FN and FNEND for user-
defined function subprograms; SUB and SUBEND for SUB subprograms), as well as all com-
ments following the delimiting statement for the end of the subprogram. Contiguous subpro-
grams may be deleted in one operation.

DELAY

See the ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS, and PRINTER IS statements.

DELIM

See the TRANSFER statement.

85

86

DELSUB

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan [F.. THEN. .. Yes

This statement deletes one or more SUB subprograms or user-defined function subprograms
from memory.

()
A

subprogram
name

DELSUB

functicn
name

. Range
Item I Description/Default I Restrictions
subprogram name name of a SUB or CSUB subprogram any valid name
function name name of a user-defined function any valid name

Example Statements

DELSUB FNTrim%
DELSUB Srpeciall:Special3

Semantics

Subprograms being deleted do not need to be contiguous in memory. The order of the names
in the deletion list does not have to agree with the order of the subprograms in memory. If there
are subprograms with the same name, the one occurring first (lowest line number) is deleted.

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB or DEF
FN) and include the comments following the line delimiting the end of the subprogram (SUBEND
or FNEND). If TO END is included. all subprograms following the specified subprogram are also
deleted, from the last subprogram to the specified subprogram.

You cannot delete:

® Busy subprograms (ones being executed).
® Subprograms which are referenced by active ON-event CALL statements.

If an error occurs while attempting to delete a subprogram with a DELSUB statement, the
subprogram is not deleted, and neither are subprograms listed to the right of the subprogram
which could not be deleted.

DET

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This REAL function returns the determinant of a matrix.

DET —-

matrix
name

Range

Description/Default e

ltem | ption/ Restrictions

matrix name name of a square, two-dimensional numeric any valid name
array;

Default = see text

Example Statements

Determinant=DET
PRINT DET(A)

Semantics

If you do not specify a matrix, DET returns the determinant of the most recently inverted matrix.

This value is not affected by context switching. If no matrix has been inverted since power-on,
pre-run, SCRATCH or SCRATCH A, 0 is returned.

The determinant is significant as an indication of whether an inverse is valid. If the determinant of
a matrix equals 0, then the matrix has no inverse. If the determinant is very small compared with
the elements of its matrix, then the inverse may be invalid and should be checked.

87

88

DIGITIZE

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN. . Yes

This statement inputs the X and Y coordinates of a digitized point from the locator specified by
GRAPHICS INPUT IS.

x coordinate y coordinate o
string
name

. Range
Item Description/Default Restric?ions
X coordinate name name of a numeric variable any valid name
y coordinate name name of a numeric variable any valid name
string name name of a string variable any valid name

Example Statements
DIGITIZE XY
IF Flad THEN DIGITIZE Xpross¥YrPossStatuss

Semantics

The returned coordinates are in the unit-of-measure currently defined for the PLOTTER IS and
GRAPHICS INPUT IS devices. The unit-of-measure may be default units or those defined by
either the WINDOW or SHOW statement. If an INTEGER numeric variable is specified and the
value entered is out of range, error 20 is reported.

If graphics input is from the keyboard. DIGITIZE is satisfied by pressing any of the following keys:
(execute). (Exec). (enter), (RuN). (stop). (RETURN). (PAUSE). (STEP). (CONTINUE). and

CONT).

The optional string variable is used to input the device status of the GRAPHICS INPUT IS device.
This status string contains eight bytes, defined as follows.

Byte i 2 3 4 5 6 7 8

Meaning Digitize) Point , Tracking ’ Button INumber

Status Significance On/Oft |

DIGITIZE 89

Byte 1: Digitize status; If the locator device supports only single point digitizing, this byte is always
a ‘1. If the locator device supports continuous digitizing, this byte is a ‘1" for all points in a
stream of continuous points except the last point, which will be returned with a *‘0”’. The method
of indicating the beginning and ending of a continuous point stream is device dependent. If the
numeric value represented by this byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4, and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; ‘0’ indicates that the point is outside the P1, P2 limits;
“1”” indicates that the point is outside the viewport, but inside the P1, P2 limits; ‘2"’ indicates that
the point is inside the current viewport limits.

Byte 5: Tracking status; ‘0’ indicates off, 1"’ indicates on.

Byte 7 and 8: The number of the buttons which are currently down. To interpret the ASCII
number returned, change the number to its binary form and look at each bit. If the bitis *“1’’, the
corresponding button is down. If the bit is “‘0”’, the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a ‘‘button 7’ is indicated in the
“button number”’ bytes. Bytes 7 and 8 will be exactly 64" regardless of whether any actual
buttons are being held down at the time. Proximity is reported only from HP-HIL locators; the HP
9111A always returns ‘00" in bytes 7 and 8. On a 35723A TouchScreen, going out of proximity
(i.e., removing your finger from the screen) will trigger a digitize. Coming into proximity on a
tablet with a button pressed will also trigger a digitize, even if the button was originally pressed
while in proximity.

90 DIM

DIM

Option Required None
Keyboard Executable No
Programmable Yes
Inan IF... THEN... No

This statement dimensions and reserves memory for REAL numeric arrays, strings and string

arrays.
(D)
/-
upper]
bound L
strlng
length
cBone
lower
Dound
Item Description/Default Range
Restrictions
numeric array name | name of a numeric array any valid name
string name name of a string variable any valid name
lower bound integer constant: —32 767 thru +32 767
Default = OPTION BASE value (O or 1) (see “‘array’’ in Glossary)
upper bound integer constant —32 767 thru +32 767
(see ‘‘array’ in Glossary)
string length integer constant 1 thru 32 767

DIM 91

Example Statements

DIM Strindg$l[100]1 Names(12)[321
DIM Arrav(-128:127+16)
DIM String_scaler$[2561 BUFFER: Real_arrav(127) BUFFER

Semantics

A program can have any number of DIM statements. The same variable cannot be declared
twice within a program (variables declared in a subprogram are distinct from those declared in a
main program, except those declared in COM). The DIM statements can appear anywhere
within a program, as long as they do not precede an OPTION BASE statement. Dimensioning
occurs at pre-run or subprogram entry time. Dynamic run time allocation of memory is pro-
vided by the ALLOCATE statement.

No array can have more than six dimensions. Each dimension can have a maximum of 32 767
elements. The actual maximum number of elements for an array depends on available
memory.

All numeric arrays declared in a DIM statement are REAL, and each element of type REAL
requires 8 bytes of storage. A string requires one byte of storage per character, plus two bytes of
overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for these
elements is reserved whether you use them or not. Any time a lower bound is not specified, it
defaults to the OPTION BASE value.

Declaring Buffers

To declare variables to be buffers, each variable’s name must be followed by the keyword
BUFFER,; the designation BUFFER applies only to the variable which it follows. String arrays
cannot be declared to be buffers.

92

DISABLE

Option Required None
Keyboard Executable Yes
Programmable Yes
[n an IF... THEN. . Yes

This statement disables all event-initiated branches currently defined, except ON END, ON
ERROR, and ON TIMEOUT.

Semantics
If an event occurs while the currently defined event-initiated branches are disabled, only the
first occurrence of each event is logged; there is no record of how many of each type of event
has occurred.

If event-initiated branches are enabled after being disabled, all logged events will initiate their
respective branches if and when system priority permits. ON ERROR, ON END, as ON TIME-

OUT branches are not disabled by DISABLE.

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

DISABLE INTR

This statement disables interrupts from an interface by turning off the interrupt generating

mechanism on the interface.

(D18ABLE INTR)—>{ .2752% 25, |

Item i Description/Default

Range
Restrictions

interface select code l numeric expression, rounded to an integer

Example Statements

DISABLE INTR 7
DISABLE INTR Isc

5, and 7 thru 31

93

94

DISP

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement causes the display items to be sent to the display line on the CRT.

(‘o1spP)

Expanded diagram

display
items

»|
1

{ DISP)} -

~

items

image

image line
number

image line
label

image
specifier

Q

©

B A

straing
expression
string
array name

Ao

(%)

display items

numeric
expression

numeric
array name

QT S—

| TAB (O

literal form of image specifier:

column 0

trailing punctuation
not allowed with USING

tab function not allowed with USING

image |

specifier list [

image
specifier list

o

DISP
. Range Recommended
Item Description/Default Restrictions Range
image line label name identifying an IMAGE statement any valid name —
image line number | integer constant identifying an IMAGE 1 thru 32 766 —
staternent
image specifier string expression (see drawing) —
string array name name of a string array any valid name —
numeric array name of a numeric array any valid name —
name
column numeric expression, rounded to an integer —32 768 thru 1 thru
+32 767 screenwidth
image specifier list literal (see next —
drawing)

repeat factor

literal

integer constant

string constant composed of characters
from the keyboard, including those gener-
ated using the ANY CHAR key

Example Statements

DISP Promprt$}

DISP TAB(S)First sTAB(Z20) s5econd

DISP USING

"S5Z.DD"iMonev

1 thru 32 767

quote mark not
allowed

95

96 DISP

image specifier list

SHO0066(be 60

.)
A/
repeat
\
Shaded items

require IO

P——

repeat
factor

SZ

ESZZ

Radix specifier cannot
be used without a
digit specifier

040

ESZ277

repeat
factor

repeat
factor

DISP 97

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E — 4 and less than 1E + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Automatic End-Of-Line Sequence
After the display list is exhausted, an End Of Line (EOL) sequence is sent to the display line,
unless it is suppressed by trailing punctuation or a pound-sign image specifier.

Control Codes
Some ASCII control codes have a special effect in DISP statements:

Character | Keystroke Name Action

CHR$(7) CTRL-G bell Sound the beeper

CHR$(8) CTRL-H backspace | Move the cursor back one
character.

CHR$(12) | CTRL-L formfeed Clear the display line.

CHR$(13) CTRL-M carriage Move cursor to column 1.

return The next character sent to

the display clears the dis-
play line, unless it is a car-
riage return

CRT Enhancements

There are several character enhancements (such as inverse and underlining) available on some
CRTs. They are accessed through characters with decimal values above 127. For a list of the
characters and their effects, see the ‘‘Display Enhancement Characters’ table in ‘‘Useful Tables”
at the back of this book.

Arrays

Arrays may be displayed in their entirety by using the asterisk specifier. They are displayed in
row-major order (right-most subscript varies most rapidly) and their format depends on the print
mode selected.

Display Without USING

If DISP is used without USING, the punctuation following an item determines the width of the
item’s display field; a semicolon selects the compact field, and a comma selects the default display
field. When the display item is an array with the asterisk array specifier, each array element is
considered a separate display item. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the display field to be used for the display item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are displayed
with one trailing blank. String items are displayed with no leading or trailing blanks.

98

DISP

The default display field displays items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is displayed with one leading blank if the number is positive, or with a minus sign if
the number is negative, whether in compact or default field.

In the TAB function, a column parameter less than one is treated as one. A column parameter
greater than the screen width (in characters) is treated as equal to the screen width.

Display With USING

When the computer executes a DISP USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the display items, the field specifier is acted upon without
accessing the display list. When the field specifer requires characters, it accesses the next item in
the display list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
display item. If the image specifiers are exhausted before the display items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the DISP statement are shown in the following table:

Image .
Specifier Meaning

K Compact field. Displays a number or string in standard form with no leading or trailing
blanks.

-K Same as K.

H Similar to K, except the number is displayed using the European number format (comma
radix). (Requires 10)

-H Same as H. (Requires 10)

S Displays the number's sign (+ or —).

M Displays the number's sign if negative. a blank if positive.

D Displays one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified. the minus sign will occupy a leading digit position. If a sign is
displayed. it will “float" to the left of the left-most digit.

Z Same as D, except that leading zeros are displayed.

Same as Z, except that asterisks are displayed instead of leading zeros. (Requires 10)

DISP 99

Image Meaning
Specifier

Displays a decimal-point radix indicator.

R Displays a comma radix indicator (European radix). (Requires 10)
E Displays an E, a sign, and a two-digit exponent.
ESZ Displays an E, a sign, and a one-digit exponent.
ESZZ Same as E.
ESZ77 Displays an E, a sign, and a three-digit exponent.
A Displays a string character. Trailing blanks are output if the number of characters speci-

fied is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are

ignored.
X Displays a blank.
literal Displays the characters contained in the literal.
B Displays the character represented by one byte of data. This is similar to the CHR$

function. The number is rounded to an INTEGER, and the least-significant byte is sent.
If the number is greater than 32 767, then 255 is used: if the number is less than
—32 768, then 0 is used.

W Displays two characters represented by the two bytes of a 16-bit, two’s-complement
integer. The corresponding numeric item is rounded to an INTEGER. If it is greater than
32 767, then 32 767 is used: if it is less than —32 768, then —32 768 is used. The
most-significant byte is sent first.

Y Same as W. (Requires 10)

Suppresses the automatic output of an EOL (End-Of-Line) sequence following the last
display item.

% Ignored in DISP images.

+ Changes the automatic EOL sequence that normally follows the last display item to a

single carriage-return. (Requires 10)

- Changes the EOL automatic sequence that normally follows the last display item to a
single line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the display line.
L Same as /.
@ Sends a form-feed to the display line.

100

DIV

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This operator returns the integer portion of the quotient of the dividend and the divisor.

——[dividend I—DCDIV)—D{ divisor }-—,

. Range
Item | Description/Default Restrictions
dividend numeric expression —
divisor numeric expression not equal to 0

Example Statements

Quotient=Dividend DIV Divisor
PRINT "Hours ="iMinutes DIV (O

Semantics

DIV returns a REAL value unless both arguments are INTEGER. In the latter case the returned
value is INTEGER. A DIV B is identical to SGN(A/B) x INT(ABS(A/B)).

Option Required MAT DOT
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the inner (dot) product of two numeric vectors.

vector vector
O O O

. Range
Item | Description/Default I Restrictions
vector name I name of a one-dimensional numeric array I any valid name

Example Statements

PRINT DOT(A,B)
B=DOT (A A}

Semantics

The dot product is calculated by multiplying corresponding elements of the two vectors and then
summing the products. The two vectors must be the same current size. If both vectors are
INTEGER, the product will be an INTEGER. Otherwise, the product will be of type REAL.

101

102

DRAW

This statement draws a line from the pen’s current position to the specified X and Y coordinate

position using the current line type and pen number.

@HAD——LX coordinate

o

Item

Description/Default

Option Required
Keyboard Executable
Programmable

Inan [F... THEN...

Range

GRAPH

Restrictions

X coordinate

y coordinate

numeric expression, in current units

numeric expression, in current units

Example Statements

DRAW 10,90
DRAW Next_xNe

Semantics

The X and Y coordinate information is interpreted according to the current unit-of-measure. Draw

Xtv

is affected by the PIVOT transformation.

A DRAW to the current position generates a point. DRAW updates the logical pen position at the
completion of the DRAW statement. and leaves the pen down on an external plotter. The line is

clipped at the current

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen

position is updated.

clipping boundary.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2
Note 1 The sturting point for labels drawn after lines or axes is affected by scaling
Note 2. The stirring point for labels drawn after other tabels is affected by LDIR

Note 3 The starting point for labels drawn after lines or axes is affected by PIVOT

Note 4 RPLOT and

IPLOT are aftected by PDIR

DROUND

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function rounds a numeric expression to the specified number of digits. If the specified

number of digits is greater than 15, no rounding takes place. If the number of digits specified is
less than 1, O is returned.

number
om0)~ O ®

.. Range Recommended
Item | Description/Default | Restrictions Range
argument numeric expression — —
number of digits numeric expression, rounded to an integer — 1 thru 15

Example Statements

Test_real=DROUND(True_real,»12)
PRINT "Approx., Yolts ="3iDROUND(Yolts »3)

103

104

DUMP

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement copies the contents of an alphanumeric or graphics display to a printing device.

- |
bl L
\
GRAPHICS devic e on L——@)——| devies scieetor
GRAPH -
Item Description/Default Ra.ng.e

Restrictions

source device numeric expression, rounded to an integer; see Glossary

selector Default =last CRT plotter

destination numeric expression, rounded to an integer; external interfaces only

device selector Default =DUMP DEVICE IS device (see Glossary)

Example Statements

DUMP ALPHA
DUMP GRAPHICS #70Z
DUMP GRAPHICS 28 TO #702

Semantics

DUMP ALPHA copies the contents of the alphanumeric display to a printer. With a bit-mapped
display, the alpha buffer is sent to the printer as alphanumeric characters.

DUMP GRAPHICS copies the entire contents of the CRT graphics display, which may contain
bit-mapped alpha, to a printer. Performing DUMP GRAPHICS to a device which does not
support the HP Raster Interface Standard will produce unpredictable results. The HP 2631G, HP
9876, and the ThinkdJet printers are among devices that support this standard.

If the destination device is not explicitly specified, it is assumed to the current DUMP DEVICE [S
device.

If EXPANDED is specified in the DUMP DEVICE IS statement, the source graphics image is
doubled in both X and Y directions before being sent to the destination device. However, if both
source and destination devices are explicitly specified. the image is sent without being expanded.

DUMP 105

If a DUMP GRAPHICS operation is stopped by pressing the key, the printer may or may not
terminate its graphics mode. Sending the printer up to 192 null characters [CHR$(0)] can be used to
terminate the graphics mode on a printer such as the HP 9876.

If the source has multiple planes of graphics memory associated with a pixel, an inclusive-OR is
performed on all the bits corresponding to the pixel. This determines whether to print it as black or
white.

If a currently active CRT is explicitly specified as the source, the CRT’s contents are dumped to the
printer; however, if the specified CRT has not been activated, error 708 is reported.

Plotters are de-activated by power-up, GINIT, SCRATCH A, or (RESET). A plotting device is
activated when it is specified in a PLOTTER IS statement. In addition, the internal CRT is also
(implicitly) activated by any of the following operations after de-activation: any pen movement;
GCLEAR; GLOAD (to the current default destination); GSTORE (from the current default source);
and DUMP GRAPHICS (from the current default source).

If a non-CRT source which is the current PLOTTER IS device is explicitly specified, the DUMP
GRAPHICS is not performed; however, if an non-CRT source which is not the current PLOTTER IS
device is explicitly specified, error 708 is reported.

On multi-plane bit-wrapped display devices, which use a graphics write-enable mask, only the
bits indicated by 1s will be ORed together and dumped.

Displays with Nonsquare Pixels

For machines which have a display with nonsquare pixels (the HP 98542A and the HP 98543A),
a non-expanded DUMP GRAPHICS will produce an image that matches the CRT only if no alpha
appears in the graphics planes. Since most printers print square pixels, this routine treats graphics
pixel pairs as single elements and prints one square for each pixel pair in the frame buffer.
Because alpha works with individual pixels, and not with pixel pairs, mixed alpha and graphics
will appear blurred on a DUMP GRAPHICS non-expanded output. Using the EXPANDED option causes
the vertical length (the height on the CRT) to be doubled as before, but dumps each separate
pixel. In this mode, mixed alpha and graphics will appear the same on the dump as on the CRT.

Note

Some printers are not capable of printing 1024 graphics dots per line,
so images dumped will be truncated to fit the printer.

106

DUMP DEVICE IS

Option Required GRAPH

Keyboard Executable
Programmable
In an IF.. THEN...

This statement specifies which device receives the data when either DUMP ALPHA or DUMP

GRAPHICS is executed without a device selector.

(oump pevice 15 | (S5ri5e. | >~
(- —(expaneD

Y

Range

Item | Description/Default I Restrictions

device selector numeric expression, rounded to an integer;

Default = 701

external interfaces only
(see Glossary)

Example Statements

DUMP DEVICE IS 721
DUMP DEVICE IS PrintersEXPANDED

Semantics

Doing a DUMP GRAPHICS to a printer which does not support the HP Raster Interface
Standard will produce unpredictable results. The HP 9876 and the HP 2631G are among the

devices which support the standard.

Specifying EXPANDED results in graphics dumps that are twice as big on each axis (except for
displays with nonsquare pixels — see DUMP GRAPHICS for details) and turned sideways. This
gives four dots on the printer for each dot on the display. The resulting picture does not fit on one

page of an HP 9876 or HP 2631G printer.

DVAL

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function converts a binary, octal, decimal, or hexadecimal character string into a REAL
whole number.

string .

- Range
Item | Description/Default Restrictions
string argument string expression, containing digits valid for the (see tables)
specified base
radix numeric expression, rounded to an integer 2,8, 10, or 16

Example Statements

Address=DVAL ("FF590004" ,16)
Real=DVAL("01010101010101010101010101010101",2)
Number=DUAL(Dctal%:8)

Semantics

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2, 8, 10,
or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two’s complement form. If all 32 digits are specified and the
leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two’s complement form. If all 11
digits are specified, and the leading digit is a 2 or a 3, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.
Hex strings are presumed to be in the hex representation of the two’s complement binary form.

The letters A through F may be specified in either upper or lower case. If all 8 digits are specified
and the leading digit is 8 through F the returned value is negative.

107

108 DVAL

Radix Base String Range String Length
2 binary 0 thru 1 to 32 characters
111111111111111111111311111 111111
8 octal 0 thru 37777777777 1 to 11 characters
10 decimal — 2147483648 thru 2147483647 1 to 11 characters
16 hexadecimal | O thru FFFFFFFF 1 to 8 characters
Radix | Legal Characters Comments
2 +.0,1 _

8 +.,0,1,2,3,4,5,6.7

10 +,—,0,1,2.3.4,5.6,

77777

L]

7.8,9

16 +,0,1,2.3.4,5,6. Ala
7.89ABCDEF, | Ele
a,b,c,d.ef

Il

Il

14, F/if = 15

Range restricts the leading character. Sign, if
used, must be a leading character.

Sign, if used, must be a leading character.

10,B/b = 11,C/c = 12,D/d = 13

DVALS$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function converts a whole number into a binary, octal, decimal, or hexadecimal string.

"32-bit" .
TDHO o ®

.. Range
Item l Description/Default | Restrictions
’32-bit” argument numeric expression, rounded to an integer —2% thru 2% —1
radix numeric expression, rounded to an integer 2,8,10,0r 16

Example Statements
F$=DUAL$(—1,18)
Binarv$=DVAL$(Count DIV 256.,2)

Semantics
The rounded argument must be a value that can be expressed (in binary) using 32 bits or less.

The radix must evaluate to be 2, 8, 10, or 16; representing binary, octal, decimal, or hexadecimal
notation.

If the radix is 2, the returned string is in two’s complement form and contains 32 characters. If the
numeric expression is negative, the leading digit will be 1. If the value is zero or positive there will
be leading zeros.

If the radix is 8, the returned string is the octal representation of the two’s complement binary
form and contains 11 digits. Negative values return a leading digit of 2 or 3.

Itthe radix is 10, the returned string contains 11 characters. Leading zeros are added to the string
if necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two’s complement

binary form and contains 8 characters. Negative values return with the leading digit in the range 8
thru F.

109

110 DVAL$

Radix Base Range of Returned String String Length
2 binary 00000000000000000000000000000000 | 32 characters
11111111111111ltlhlrll‘lllllllllllllll
8 octal 00000000000 thru 37777777777 11 characters
10 decimal —2147483648 thru 2147483647 11 characters
16 hexadecimal | 00000000 thru FFFFFFFF 8 characters

111

ECHO

See the SET ECHO statement.

EDGE

See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT and SYMBOL statements.

112

EDIT

Option Required
Keyboard Executable

Programmable

Inan IF.. THEN...

This command allows you to enter or edit either a program or typing-aid key definitions.

(EDIT)} > -
number o
O
(e} ’
number KBD
Item Description/Default Range
Restrictions

line number integer constant identifying program line; 1 thru 32 766

Default (see Semantics)
line label name of a program line any valid name
increment integer constant; Default = 10 1 thru 32 766

key number integer constant 0 thru 23

Example Statements

EDIT
EDIT 1000,5
EDIT KEY 4
Semantics

The EDIT command allows you to scroll through a program in the computer by using the arrow
keys, (Prev), ((Next). or the knob. Lines may be added to the end of a program by going to the
bottom of the program. A new line number will be provided automatically. Lines may be added
between existing program lines by using the insert line key, and lines may be deleted by using the
delete line key. Lines may be modified by typing the desired characters over the existing line, using
the insert character and delete character keys as necessary. (ENTER). (EXECUTE) or (RETURN) are

used to store the newly created or modified lines.

Edit mode is exited by pressing (CONTINUE), (_CLR SCR), (_ Clear display), (PAUSE). ((Stop) (on HP

46020A), (RESET), (RUN), or (_STEP) or by executing CAT, LIST, GET, or LOAD. If the program was
changed while paused, pressing will generate an error, since modifying a program moves it

to the stopped state.

EDIT 113

EDIT Without Parameters

If no program is currently in the computer, the edit mode is entered at line 10, and the line
numbers are incremented by 10 as each new line is stored. If a program is in the computer, the
line at which the editor enters the program is dependent upon recent history. If an error has
paused program execution, the editor enters the program at the line flagged by the error
message. Otherwise, the editor enters the program at the line most recently edited (or the
beginning of the program after a LOAD operation).

EDIT With Parameters

If no program s in the computer, a line number (not a label) must be used to specify the beginning
line for the program. The increment will determine the interval between line numbers. If a
program is in the computer, any increment provided is not used until lines are added to the end of
the program. If the line specified is between two existing lines, the lowest-numbered line greater
than the specified line is used. If a line label is used to specify a line, the lowest-numbered line with
that label is used. If the label cannot be found, an error is generated.

EDIT KEY (Requires KBD)

To enter the EDIT KEY mode, type EDIT KEY, followed by the key number, and press (_ EXECUTE),
(ENTER), or (_RETURN). Also, the desired softkey can be pressed after typing or pressing EDIT. When
EDIT KEY mode is entered, the current key definition (if any) is displayed. You then edit the
contents as if it were any other keyboard line. Non-ASCIl keys may be included in the key
definition by holding while pressing the desired key. Non-ASCII keystrokes are represented
by an inverse-video “‘K” followed by another character associated with the key. The table Second
Byte of Non-ASCII Key Sequences in the ‘‘Useful Tables” section of this manual has a list of the
characters associated with the special keys.

Note
On the HP 98203A keyboard, many non-ASCll keys cannot be accessed
by the method of holding while pressing the desired key. Howev-
er, any of the non-ASCII keys can be entered into a softkey definition by
pressing 255, followed by the character associated with that
non-ASCII key.

To accept the modified key definition, press (ENTER) or (_RETURN); to abort without changing the
current definition, press (PAUSE), (_CLR SCR), or (_ Clear display).

When a program is waiting for a response to an INPUT, LINPUT or ENTER, the typing aid
definitions (defined with EDIT KEY) are in effect. When a program is running but not waiting for
user input, the active ON KEY definitions supercede the typing aid definitions. Softkeys without
ON KEY definitions retain their typing-aid function.

—

ELSE

See the IF...THEN statement.

114

ENABLE
Option Required None
Keyboard Executable Yes
Programmable Yes
Inan [F... THEN... Yes

This statement re-enables all event-initiated branches which were suspended by DISABLE. ON
END, ON ERROR, and ON TIMEOUT are not affected by ENABLE and DISABLE.

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

ENABLE INTR

This statement enables the specified interface to generate an interrupt which can cause end-of-

statement branches.

(EnABLE INTR)~ ooTeet 255 | - =
o
mask

Item | Description/Default

Range
Restrictions

interface select code | numeric expression, rounded to an integer

bit mask numeric expression, rounded to an integer

Example Statements

ENABLE INTR 7
ENABLE INTR IsciMask

Semantics

5, and 7 thru 31

—32 768 thru +32 767

If a bit mask is specified, its value is stored in the interface’s interrupt-enable register. Consult
the documentation provided with each interface for the correct interpretation of its bit mask

values.

If no bit mask is specified, the previous bit mask for the select code is restored. A bit mask of all

zeros is used when there is no previous bit mask.

115

116

END

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... No

This statement marks the end of the main program. (For information about END as a secondary
keyword, see the OUTPUT and SEND statements.)

Semantics

END must be the last statement (other than comments) of a main program. Only one END
statement is allowed in a program. (Program execution may also be terminated with a STOP
statement, and multiple STOP statements are allowed.) END terminates program execution,
stops any event-initiated branches, and clears any unserviced event-initiated branches. CON-
TINUE is not allowed after an END statement.

Subroutines used by the main program must occur prior to the END statement. Subprograms
and user-defined functions must occur after the END staternent.

See the IF... THEN statement.

See the LOOP statement.

See the SELECT...CASE construct.

See the WHILE statement.

END IF

END LOOP

END SELECT

END WHILE

117

118

ENTER Option Required None

Keyboard Executable Yes
Programmable Yes
In an [F.. THEN. . Yes

This statement is used to input data from a device, file, string, or buffer and assign the values
entered to variables. (If using ENTER with SRM, also refer to the ‘““SRM”’ section of this manual.)

ENTER source

Expanded diagram
source 1image items
Al

AL
4 Al s Y

ENTER (e) /052" -
d 11
O 1 ={(us1ne S

device image line
selector g label
source $ image
string name specifier

numeraic i
name =1

enter
items

strang
ane[(s

{

beginning
position
Ve
ending
position
substring
length

. ol (*)'\ J
) vy

subscript

literal form of image specifier

@

g |] n
specifier list |

Item

repeat
factor

image
specifier list

Description/Default

ENTER

Range
Restrictions

I/O path name

record number
device selector
source string name

subscript

image line number
image line label
image specifier
numeric name
string name

beginning position

ending position

substring length

image specifier list
repeat factor

literal

name assigned to a device, devices, mass storage
file, or buffer

numeric expression, rounded to an integer
numeric expression, rounded to an integer
name of a string variable

numeric expression, rounded to an integer

integer constant identifying an IMAGE statement
name identifying an IMAGE statement

string expression

name of a numeric variable

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

literal
integer constant

string constant composed of characters from the
keyboard, including those generated using the
ANY CHAR key

any valid name
(see ASSIGN)

1 thru 2% -1
(see Glossary)

any valid name

—32 767 thru +32 767
(see “‘array’ in
Glossary)

1 thru 32 766
any valid name
(see drawing)
any valid name
any valid name

1 thru 32 767
(see “‘substring”
in Glossary)

0 thru 32 767
(see “‘substring”
in Glossary)

0 thru 32 767
(see “‘substring’’
in Glossary)

(see next drawing)
1 thru 32 767

quote mark not allowed

119

120 ENTER

image specifier list

 O[H00000[Ho660

repeat
factaor

> | (2 }-:l—b
repeat repeat
factor factor

ESZZ

r

Radix specifier cannot

be used withaut a
digit specifier
Shaded items
require IO

0900

ESZ7Z

repeat
factor

repeat
factor

repeat
factor

repeat
factor

AEIEIRIRIEY:

repeat
factor

" o literal o "

ENTER 121

Example Statements

ENTER 705 iNumbersStrings$

ENTER @BFilesArray (%)

ENTER BSource USING FmtSiltem(1) sItem(Z2) sItem(3)
ENTER 12 USING "#,G6A"A$[Z2i6]

Semantics

The Number Builder

If the data being received is ASCII and the associated variable is numeric, a number builder is
used to create a numeric quantity from the ASCII representation. The number builder ignores all
leading non-numeric characters, ignores all blanks, and terminates on the first non-numeric
character, or the first character received with EOI true. (Numeric characters are 0 thru 9, +, -,
decimal point, e, and E, in a meaningful numeric order.) If the number cannot be converted to the
type of the associated variable, an error is generated. If more digits are received than can be
stored in a variable of type REAL, the rightmost digits are lost, but any exponent will be built
correctly. Overflow occurs only if the exponent overflows.

Arrays

Entire arrays may be entered by using the asterisk specifier. Each element in an array is treated as
an item by the ENTER statement, as if the elements were listed separately. The array is filled in
row major order (rightmost subscript varies fastest.)

Files as Source

If an I/O path has been assigned to a file, the file may be read with ENTER statements. The file
must be an ASCII or BDAT file. The attributes specified in the ASSIGN statement are used only if
the file is a BDAT file. Data read from an ASCII file is always in ASCII format. Data read from a
BDAT file is considered to be in internal format if FORMAT is OFF, and is read as ASCII
characters if FORMAT is ON.

Serial access is available for both ASCII and BDAT files. Random access is available for BDAT
files. The file pointer is important to both serial and random access. The file pointer is set to the
beginning of the file when the file is opened by an ASSIGN. The file pointer always points to the
next byte available for ENTER operations.

Random access uses the record number parameter to read items from a specific location in a file.
The record specified must be before the end-of-file. The ENTER begins at the beginning of the
specified record.

It is recommended that random and serial access to the same file not be mixed. Also, data should

be entered into variables of the same type as those used to output it (e.g. string for string, REAL
for REAL, etc.).

122 ENTER

Devices as Source

An /0O path name or a device selector may be used to ENTER from a device. If a device selector is
used, the default system attributes are used (see ASSIGN). If an /O path name is used, the
ASSIGN statement determines the attributes used. If multiple devices were specified in the
ASSIGN, the ENTER sets the first device to be talker, and the rest to be listeners.

I[f FORMAT ON is the current attribute, the items are read as ASCIL If FORMAT OFF is the
current attribute, items are read from the device in the computer’s internal format. Two bytes are
read for each INTEGER, eight bytes for each REAL. Each string entered consists of a four byte
header containing the length of the string, followed by the actual string characters. The string
must contain an even number of characters; if the length is odd, an extra byte is entered to give
alignment on the word boundary.

CRT as Source

If the device selector is 1, the ENTER is from the CRT. The ENTER reads characters from the
CRT, beginnning at the current print position (print position may be modified by using TABXY in
a PRINT statement.) The print position is updated as the ENTER progresses. After the last
non-blank character in each line, a line-feed is sent with a simulated “EOI’’. After the last line is
read, the print position is off the screen. If the print position is off screen when an ENTER is
started, the off-screen text is first scrolled into the last line of the display.

Keyboard as Source

ENTER from device selector 2 may be used to read the keyboard. An entry can be terminated by
pressing (ENTER), (EXECUTE), (_RETURN). (CONTINUE). or (_STEP). Using (ENTER), (_EXECUTE), (_RETURN) or
causes a CR/LF to be appended to the entry. The (CONTINUE) key adds no characters to the
entry and does not terminated the ENTER statement. If an ENTER is stepped into, itis stepped out of,
even if the key is pressed. An HP-IB EOI may be simulated by pressing (E)
before the character to be sent, if this feature has been enabled by an appropriate CONTROL
statement to the keyboard (see the Control and Status Registers in the back of this book).

Strings as Source
If a string name is used as the source, the string is treated similarly to a file. However, there is no
file pointer; each ENTER begins at the beginning of the string, and reads serially within the string.

Buffers as Source (Requires TRANS)

When entering from an I/O path assigned to a buffer, data is removed from the buffer beginning
at the location indicated by the buffer’s empty pointer. As data is received, the current number-
of-bytes register and empty pointer are adjusted accordingly. Encountering the fill pointer (buffer
empty) produces an error unless a continuous inbound TRANSFER is filling the buffer. In this
case, the ENTER will wait until more data is placed in the buffer.

Since devices are logically bound to buffers, an ENTER statement cannot intercept data while it is
traveling between the device and the buffer. If an /O path is currently being used in an outbound
TRANSFER, and an ENTER statement uses it as a source, execution of the ENTER is deferred
until the completion of the TRANSFER. An ENTER can be concurrent with an inbound TRANS-
FER only if the source is the /O path assigned to the buffer.

An ENTER from a string variable that is also a buffer will not update the buffer’s pointers and may
return meaningless data.

ENTER 123

ENTER With USING

When the computer executes an ENTER USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If no variable is required for the field specifier, the field specifier is acted upon without
referencing the enter items. When the field specifer references a variable, bytes are entered and
used to create a value for the next item in the enter list. Each element in an array is considered a
separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
enter item. If the image specifiers are exhausted before the enter items, the specifiers are reused,
starting at the beginning of the specifier list.

Entry into a string variable always terminates when the dimensioned length of the string is
reached. If more variables remain in the enter list when this happens, the next character received
is associated with the next item in the list.

When USING is specified, all data is interpreted as ASCII characters. FORMAT ON is always
assumed with USING, regardless of any attempt to specify FORMAT OFF.

Effects of the image specifiers on the ENTER statement are shown in the following table:

124 ENTER

Image

Specifier Meaning
K Freefield Entry.

Numeric: Entered characters are sent to the number builder. Leading non-numeric char-
acters are ignored. All blanks are ignored. Trailing non-numeric characters and
characters sent with EQOI true are delimiters. Numeric characters include digits.
decimal point, +. —. e, and E when their order is meaningful.

String: Entered characters are placed in the string. Carriage-return not immediately
followed by line-feed is entered into the string. Entry to a string terminates on
CR/LF. LF. a character received with EQI true. or when the dimensioned length
of the string is reached.

-K Like K except that LF is entered into a string. and thus CR LF and LF do not terminate the
entry.
H Like K. except that the European number format is used. Thus, a comma is the radix

indicator and a period is a terminator for a numeric item. (Requires 10)

~-H Same as — K for strings: same as H for numbers. (Requires 10)
S Same action as D.
M Same action as D.
D Demands a character. Non-numerics are accepted to fill the character count. Blanks are
ignored. other non-numerics are delimiters.
Z Same action as D.
¥ Same action as D. (Requires 10)

Same action as D.

R Like D. R demands a character. When R is used in a numeric image, it directs the number

builder to use the European number format. Thus. a comma is the radix indicator and a

period is a terminator for the numeric item. (Requires 10)

E Same action as 4D.
ESZ Same action as 3D.
ESZZ Same action as 4D.

ENTER 125

Image .
Specifier Meaning
ESZZ7 Same action as 5D.
A Demands a string character. Any character received is placed in the string.
X Skips a character.
literal Skips one character for each character in the literal.

B Demands one byte. The byte becomes a numeric quantity.

W Demands one 16-bit word, which is interpreted as a 16-bit, two’s-complement integer. If
either an /O path name with the BYTE attribute or a device selector is used to access an
8-bit interface, two bytes will be entered; the most-significant byte is entered first. If an I/O
path name with the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is
overridden and one word is entered in a single operation. If an I/O path name with the
WORD attribute is used to access a 16-bit interface, one byte is entered and ignored when
necessary to achieve alignment on a word boundary. If the source is a file, string variable, or
buffer, the WORD attribute is ignored and all data are entered as bytes; however, one byte
will be entered and ignored when necessary to achieve alignment on a word boundary.

Y Like W, except that pad bytes are never entered to achieve word alignment. If an I/O path
name with the BYTE is used to access a 16-bit interface, the BYTE attribute is not overrid-
den (as with W specifier above). (Requires 10)

Staternent is terminated when the last ENTER item is terminated. EOI and line-feed are item
terminators, and early termination is not allowed.

% Like #, except that an END indication (such as EOI or end-of-file) is an immediate state-
ment terminator. Otherwise, no statement terminator is required. Early termination is
allowed if the current item is satisfied.

+ Specifies that an END indication is required with the last character of the last item to
terminate the ENTER statement. Line-feeds are not statement terminators. Line-feed is an
item terminator unless that function is suppressed by —K or —H. (Requires 10)

- Specifies that a line-feed terminator is required as the last character of the last item to
terminate the statement. EOl is ignored, and other END indications, such as EOF or end-of-
data, cause an error if encountered before the line-feed. (Requires 10)

/ Demands a new field; skips all characters to the next line-feed. EQI is ignored.

L Ignored for ENTER.

Ignored for ENTER.

126 ENTER

ENTER Statement Termination

A simple ENTER statement (one without USING) expects to give values to all the variables in the
enter list and then receive a statement terminator. A statement terminator is an EOI, a line-feed
received at the end of the last variable (or within 256 characters after the end of the last variable),
an end-of-data indication, or an end-of-file. If a statement terminator is received before all the
variables are satisfied, or no terminator is received within 256 bytes after the last variable is
satisfied, an error occurs. The terminator requirements can be altered by using images.

An ENTER statement with USING, but without a % or # image specifier, is different from a simple
ENTER in one respect. EOlis not treated as a statement terminator unless it occurs on or after the
last variable. Thus, EOl is treated like a line-feed and can be used to terminate entry into each
variable.

An ENTER statement with USING that specifies a # image requires no statement terminator
other than a satisfied enter list. EOI and line feed end the entry into individual variables. The
ENTER statement terminates when the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOl as a statement terminator.
Like the # specifier, no special terminator is required. Unlike the # specifier, if an EOl is received,
it is treated as an immediate statement terminator. If the EOI occurs at a normal boundary

between items, the ENTER statement terminates without error and leaves the value of any
remaining variables unchanged.

EOL

See the ASSIGN, PRINTALL IS, and PRINTER IS statements.

EOR

See the OFF EOR, ON EOR. and TRANSFER statements.

EOT

See the OFF EOT and ON EOT statements.

127

ERRDS

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This function returns an INTEGER representing the device selector of the I/O resource involved
in the most recent I/O error.

Example Statements

IF ERRDS=701 THEN GOSUB Printer_.fault
IF ERRN=163 THEN Missind=ERRDS

Semantics

The device selector will include a primary address if the interface addressed allows it (i.e. HP-IB).
If the resource is a file, the device specifier of the drive containing the file is returned. If the
resource is not a device, 0 is returned. If no I/O error has occured in a running program since
power-up, SCRATCH A, or pre-run, O is returned.

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the I/O path name assigned to the non-buffer end of the transfer
instead of being reported immediately. It is not reported until the next reference to the I/O path
name, and ERRDS will not be updated until this time.

128

ERRL

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This function returns a value of 1 if the most recent error occurred in the specified line; otherwise,
a value of 0 is returned.

. Range
Item I Description/Default | Restrictions
line number integer constant

line label name of a program line

Example Statements

IF ERRL(220) THEN Parse_.error
IF NOT ERRL{(Parameters) THEN Other

Semantics

‘ 1 thru 32 766

any valid name

The specified line must be in the same context as the ERRL function, or an error will occur.

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the transfer instead of being reported
immediately. Itis not reported until the next reference to the I/O path name, and ERRL will not be
updated until this time. Therefore, ERRL will actually refer to the line containing the new
reference to the IO path name. not the line containing the TRANSFER statement that caused the

error.

Data Communications

This function returns O for all Data Communications errors.

ERRM$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the text of the error message associated with the most recent program
execution error,

Example Statements
PRINT ERRMS$

Em$=ERRM$
ENTER Em$iError_numbersError_line

Semantics

If no error has occurred since power on, prerun, SCRATCH, SCRATCH A, LOAD, or GET, the
null string will be returned. The line number and error number returned in the ERRMS string are
the same as those used by ERRN and ERRL, which may be surprising when a TRANSFER is in
effect. For details on the interaction, see ERRL and ERRN.

129

130

ERRN

Option Required None
Keyboard Executable Yes
’ Programmable Yes
In an [F... THEN... Yes

This function returns the number of the most recent program execution error. If no error has
occurred, a value of 0 is returned.

Example Statements

IF ERRN=80 THEN Disc_out
DISP "Error Numher" iERRN

Semantics

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the transfer instead of being reported
immediately. It is not reported until the next reference to the [/O path name, and ERRN will not be
updated until this time.

ERROR

See the OFF ERROR and ON ERROR statements.

EXIT IF

See the LOOP statement.

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This operator returns a 1 or a 0 based on the logical exclusive-or of its arguments.

numeric numeric
'I expression I '(EXOR) 'I expression

Example Statements

OK=First_pass EXOR Old_.data

IF A EXOR Flag THEN Exit

Semantics

J_.

EXOR

A non-zero value (positive or negative) is treated as a logical 1; only a zero is treated as a logical

0.

The EXOR function is summarized in this table.

A | B | AEXORB
0o 0
01 1
1| o 1
111 0

131

132

EXP

Option Required None
Keyboard Executable Yes
Programmabile Yes
Inan [F.. THEN. . Yes

This function raises e to the power of the argument. In the computer, Napierian

e~ 2.718 281 828 459 05.

DT OREE=N0

. Range
Item | Description/Default Restrictions
argument numeric expression —708.396 418 532 264
thru

+709.782 712 893 383 8

Example Statements
Y=EXP(=X"2/2)
PRINT "e to the"3jZi"="3EXP(Z)

133

EXPANDED

See the DUMP DEVICE IS statement.

FILL

See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL statements.

134

FIND

Option Required PDEV
Keyboard Executable Yes
Programmable No
In an [F... THEN... No
This command allows you to find a character sequence while editing a program.
beginning
line number
.
line label line number
line label
Item Description/Default Range
Restrictions
text literal —
beginning line number integer constant identifying program line 1 to 32 766
beginning line label name of a program line any valid name
ending line number integer constant identifying program line 1to 32 766
ending line label name of a program line any valid name

Example Statements

FIND "SUB Print"

FIND "Cost=" IN Z50,Labell

FIND "Interval™

Semantics

IN 1850

This command causes a search to be made through the program currently in memory. It
compares the specified text to an internal ‘‘listing”’ of the program. Therefore, line numbers,
keywords, variables, and constants can be found.

[f an occurrence of the specified text is found. the line containing it is displayed with the cursor
under the first character of that occurrence. The line can be modified or deleted if desired. If
(ENTER), ((RETURN) or the delete line key is pressed, the search resumes with the next character.
Alternately, the search is resumed without modifying the program when is pressed. Note
that overlapping occurrences will not be detected; e.g, if you were looking for “‘issi”’, only one
occurrence would be found in *‘Mississippi’.

FIND 135

If the Beginning Line Number is given, the search commences at that line number. If the specified
line number doesn’t exist, the next line that does exist is used. If the Beginning Line Number is not
specified, then the search begins at the line currently being edited; or, (if you're not in edit mode),
with the first line of the program. If a specified label doesn’t exist, an error occurs.

The search continues through the last character of the Ending Line; or (if that was not-specified)
the end of the program. If you specify an Ending Line Number that does not exist, the highest-
numbered line which occurs before that line number is used.

If there were no occurrences found, the cursor is left at the end of the first line searched. If one or
more occurrences were found, the cursor is left at the end of the line containing the last
occurrence. :

A FIND command is cancelled by entering a line after having changed its line number. Other keys
which will cancel a FIND are (_EXECUTE), (CLR 10), (BREAK), (_ 1), (|), or (INs LN). Any of the keys
which cancel EDIT mode will also cancel a FIND.

FIND is not allowed while a program is running; however, it may be executed while a program is
paused. The program is continuable if it has not been altered by pressing (ENTER), (_RETURN),
(_EXECUTE) or (DEL LN).

While in the FIND mode, keyboard execution is only possible with the (_EXECUTE) key. Using (ENTER) or
RETURN) causes an error.

136

FN

Option Required
Keyboard Executable
Programmable

In an IF... THEN...

This keyword transfers program execution to the specified user-defined function and may pass
items to the function. The value returned by the function is used in place of the function call

when evaluating the statement containing the function call.

- function }

-

pass
parameter

pass parameters:

o

|

(D
o/

@ I/0 path

name

name

| string cr numeric l
array element

Passed by Reference f

Passed by Value ‘

oI [

string of numeric
array element

variable
name

4v1substrnng|

i string expressions containing monadic P

operators, dyadic operators, or functions

numeric expression containing monadic J
operators, dyadic operators, or functions

FN

. Range
Item Description/Default Restrictions

function name name of a user-defined function any valid name
[/O path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)
variable name name of a numeric or string variable any valid name
substring string expression containing substring nota- (see Glossary)

tion
literal string constant composed of characters from —

the keyboard, including those generated us-

ing the ANY CHAR key
numeric constant numeric quantity expressed using numerals, —

and optionally a sign, decimal point, or

exponent notation

Example Statements

PRINT H3sFNChangde (X
Final$=FNTrim$(First%)
Result=FNPround(Items+Power)

Semantics
A user-defined function may be invoked as part of a stored program line or as part of a statement
executed from the keyboard. If the function name is typed and then (_EXECUTE), (ENTER) or

RETURN) is pressed, the value returned by the function is displayed. The dollar sign suffix indicates
that the returned value will be a string. User-defined functions are created with the DEF FN statement.

The pass parameters must be of the same type (numeric or string) as the corresponding
parameters in the DEF FN statement. Numeric values passed by value are converted to the
numeric type (REAL or INTEGER) of the corresponding formal parameter. Variables passed by
reference must match the type of the corresponding parameter in the DEF FN statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

Invoking a user-defined function changes the program context. The functions may be invoked
recursively.

If there is more than one user-defined function with the same name, the lowest numbered one
is invoked by FN.

137

138

FNEND

See the DEF FN statement.

139

FOR...NEXT

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... No

This construct defines a loop which is repeated until the loop counter passes a specific value.
The step size may be positive or negative.

final | ol
>

) | locp initial o
(:FOR counter value TO value
step
program STEP size
)

(PEX{)*** COtﬁ?LP F_'+

s Range
Item Description/Default Restrictions

loop counter name of a numeric variable any valid name
initial value numeric expression —
final value numeric expression —
step size numeric expression; Default = 1 —
program segment any number of contiguous program lines not —

containing the beginning or end of a main

program or subprogram, but which may

contain properly nested construct(s).

Example Program Segments

100 FOR I=4 TO 0 STEP -.1
110 PRINT I3SQR(I)
120 NEXT I

1220 INTEGER Point

1230 FOR Point=1 TO LEN(AS%$)
1240 CALL Convert(A$LPointill)
1250 NEXT Point

Semantics

The loop counter is set equal to the initial value when the loop is entered. Each time the
corresponding NEXT statement is encountered, the step size (which defaults to 1) is added to
the loop counter, and the new value is tested against the final value. If the final value has not
been passed, the loop is executed again, beginning with the line immediately following the FOR
statement. If the final value has been passed, program execution continues at the line following
the NEXT statement. Note that the loop counter is not equal to the specified final value when
the loop is exited.

140

FOR...NEXT

The loop counter is also tested against the final value as soon as the values are assigned when
the loop is first entered. If the loop counter has already passed the final value in the direction
the step would be going, the loop is not executed at all. The loop may be exited arbitrarily (such
as with a GOTO), in which case the loop counter has whatever value it had obtained at the time
the loop was exited.

The initial, final and step size values are calculated when the loop is entered and are used while
the loop is repeating. If a variable or expression is used for any of these values, its value may be
changed after entering the loop without affecting how many times the loop is repeated. Howev-
er, changing the value of the loop counter itself can affect how many times the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step size
values. The previous value of the loop counter is not changed until after the initial, final, and
step size values are calculated.

If the step value evaluates to 0, the loop repeats infinitely and no error is given.

Nesting Constructs Properly

Each FOR statement is allowed one and only one matching NEXT statement. The NEXT
statement must be in the same context as the FOR statement. FOR...NEXT loops may be
nested, and may be contained in other constructs, as long as the loops and constructs are
properly nested and do not improperly overlap.

FORMAT

See the ASSIGN statement.

141

FRACT

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns a number greater than or equal to zero and less than 1, representing the
“fractional part”’ of the value of its argument. For all X, X=INT(X) + FRACT(X).

numeric
FracT—~(0) D

Example Statements

PRINT FRACT (X
Right_digits=FRACT(All.didits)

142

FRAME

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement draws a frame around the current clipping area using the current pen number

and line type. After drawing the frame, the current pen position coincides with the lower left
corner of the frame, and the pen is up.

FRENCH

See the LEXICAL ORDER IS statement.

GCLEAR

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement clears the graphics display or sends a command to an external plotter to advance the
paper. With bit-mapped displays, the memory is cleared and the alpha is restored.

Multi-Plane Bit-Mapped Displays

The GCLEAR statement clears all planes designated as graphics planes with the current graphics
write-mask. This includes any planes which are both alpha and graphics planes. See the
“Multi-Plane Bit-Mapped Displays” section in the Graphics Techniques manual for information
on enabling and displaying specific frame buffer planes.

Note

If any planes in the frame buffer are enabled by both the alpha mask
and the graphics mask, the common planes, as well as the graphics
planes, will be cleared. Then, the alpha data will be redisplayed in the
common planes. This may cause text which was previously hidden or
overwritten by graphics to reappear.

GERMAN

See the LEXICAL ORDER IS statement.

143

144

GESCAPE

Option Required GRAPHX

Keyboard Executable Yes
Programmable Yes
In an IF... THEN Yes

This statement is used for communicating device-dependent information.
(Coescape {250 ter (O~ Beeer]] -
t
E——@—-{ R e @D 7
() return] ((%))),

array name

Range
Item Description/Default e
ption/ Restrictions
device selector numeric expression, rounded to an integer (see Glossary)
operation selector numeric expression, rounded to an integer (device dependent, see
Semantics)

parameter array name name of array which has a specific rank and size, any valid name

containing parameters necessary for executing

request
return array name name of array which has a specific rank and size any valid name

into which the returned parameters are placed

Example Statements

GESCAPE 28,5 (Selects alternate drawing mode)
GESCAPE 3:23iColor_mar (%) (Get the values in the color map)

Semantics

The parameter array and return array are for sending data to the device and getting data from the
device, respectively. The use of the parameter array is currently unimplemented and is reserved
for future use.

Color Map Information
The number of entries in the color map can be determined with a GESCAPE operation selector 1.
The return array must be one-dimensional with at least one element.

The RGB values of the pens in the the color map can be obtained through GESCAPE operation
selector 2. The return array must be a two-dimensional three-column array with at least one row.
The values returned are in the range on 0 to 1 and are multiples of 1/15 (one fifteenth). The first
row in the array always contains the values for PEN 0; if you want PEN 12, you must have at least
thirteen rows in the array. Array filling occurs until either the array or the color map is exhausted.

GESCAPE 145

Determining Hard Clip Limits and GSTORE Array Size

The hard clip limits of the current plotting device can be obtained through executinga GESCAPE
with operation selector 3. The return array must be a one-dimensional INTEGER array with at
least four elements. Values will be returned in the smallest resolvable units for that device. For a
CRT, units are pixels. '

Operation selector 3 also returns information useful for GSTORE and GLOAD files. The fifth and sixth
elements returned give the two array dimensions to use (in conjunction with the ALLOCATE
statement) to GSTORE the contents of the specified display. For example, on a HP 98544A display
with all planes enabled for graphics, the dimensions returned would be 256 and 400-256 words
for each of the 400 lines. That is, 1024 pixels wide, and four pixels’ worth of information in each
16-bit word. This allows the user to programmatically determine the size of the integer array to
allocate for storing an image and thus avoid machine-dependent code.

Drawing Mode Dominance

The normal drawing mode and the alternate drawing mode can be entered by using GESCAPE
operation selectors 4 and 5, respectively. Drawing in normal mode ‘“‘covers up’’ any previously-
drawn image. Drawing in alternate mode with positive pen numbers causes the color-map entry
number at each pixel to be inclusively-ORed with the pen value currently being drawn with.
Drawing in alternate mode with negative pen numbers causes the color-map entry number at
each pixel to be exclusively-ORed with the pen value currently being drawn with. Drawing in
alternate mode with negative pen numbers causes the color-map entry number at each pixel to
be exclusively-ORed with the pen value currently being drawn with.

Multi-Plane Bit-Mapped Displays

The Write-Enable and Display-Enable Masks
If you have a multi-plane frame buffer and display, there are two user-definable masks which
control certain aspects of graphical operations. They are:

® The write-enable mask. This mask is an integer whose bits, from the least-significant bit end,
designate those frame buffer planes which will be affected by graphics operations. Bit values
of 1 denote enabled planes (planes to be written to), and bit values of ¢ denote disabled
planes (planes which will not be written to). For example, if you have a four-plane frame
buffer, and you set the write-enable mask to 3 (binary 0011), only values in frame buffer
planes 1 and 2 will be modified by graphical operations.

e The display-enable mask. This mask is an integer whose bits, from the least-significant bit
end, designate those frame buffer planes which are to be displayed. These bits may or may
not indicate the same planes as the write-enable mask indicates. That is, you can write to
some planes, and display others. Bit values of 1 denote planes which are to be displayed, and
bit values of 0 denote planes which are not to be displayed. For example, if you have a
four-plane frame buffer, and you set the write-enable mask to 5 (binary 0101), only values in
frame buffer planes 1 and 3 will be displayed.

NOTE
Both the write-enable mask and the display-enable mask are initial-
ized to all planes that exist in the machine at power up and SCRATCH A
time.

146 GESCAPE

Operation selector 6, which works with all CRTs, allows the user to obtain the current graphics
write-enable and display-enable values. The first element of the return array contains the
write-enable mask; the second represents the display-enable mask. The return array must be a
one-dimensional integer array with at least one element. Array filling occurs until either the array
or the masks are exhausted.

Operation selector 7, which works only with multi-plane Series 300 CRTs, allows the user to set
the graphics write-enable and display-enable values. The first element of the parameter array
contains the write-enable mask; the second represents the display-enable mask. Again, the
parameter array must be a one-dimensional integer array with one or more elements. If only one
element exists, the write-enable mask is set as specified and the display-enable mask remains
unchanged.

Legal values for both masks are:

e O through 15 for 4-plane systems,
e O through 255 for 8-plane systems.

Absolute Locator Hard Clip Limits

Operation selector 20 sets the hardclip limits for absolute HP-HIL locators. That s, it simulates, in
software, the changing of the hardclip limits. These limits must be inside the largest X and largest
Y, taken individually, for all absolute locators on the HP-HIL bus.

Operation selector 21 returns the current hardclip limits for absolute HP-HIL locators. These are
the values used in GRAPHICS INPUT 15 scaling. Operation selector 21 is different than operation
selector 22 in that 22 always returns the values ‘‘hardwired” into the device(s) on the HP-HIL
bus, whereas the values returned by operation selector 21 may have come from operation
selector 20 or from the device on the bus.

Operation selector 22 returns the hardware-defined hardclip limits of all absolute locators on the
HP-HIL bus.

For the three GESCAPE selectors above—20, 21, and 22—-the parameter array must be a one-
dimensional integer array. Only the first two entries will be used for 20 and 21: X2 and Y2. No
space is taken for the X1 and Y1 values, since the coordinates of P1 (the lower, left-hand corner)
cannot be changed on HP-HIL absolute locators; X1 and Y1 will always be zeroes. For operation
selector 22, entries will be made until the array is full or all devices on the bus have been covered.
If more array entries exist after the devices are all represented, a — 1 will be put in what would be
the X coordinate entry of the next device to indicate the end of valid data. (Hardclip limits for
these devices are limited to the range O through 32 767.)

Unlike other GESCAPES, selectors 20 through 22 do not require the device at the specified select
code to be currently active. Indeed, to be effective, GESCAPE 2,20, which sets hard clip limits,
must be done before doing the GRAPHICS INPUT IS KBD. "TABLET" statement. Operations 20
and 21 will give ‘‘DEVICE NOT PRESENT’ errorsif no tablet (or HP-HIL interface) exists, but 22 will
return — 1 for its first entry in that case. All will give a configuration error if the KBD binary is not
present.

GESCAPE
Functions Available Through GESCAPE
Operation
Selector Return Array

1 A(0): Number of entries in the color map

2 A(0,0): Pen 0 red color map value
A(0,1): Pen 0 green color map value
A(0,2): Pen 0 blue color map value + Color-Mapped Graphic Devices
A(lS,O): Peﬁ 15 red color map value
A(15,1): Pen 15 green color map value
A(15,2): Pen 15 blue color map value]

3 A(0): X minimum hard clip value 1
A(1): Y minimum hard clip value . .
A(2): X maximum hard clip value All Graphics Devices
A(3): Y maximum hard clip value J
A(4): Rows required for GSTORE integer array All CRT
A(5): Columns required for GSTORE integer array } s

4 Set normal drawing mode

} All Color CRT Graphics Devices

5 Set alternate drawing mode

6 A(0): Current graphics write-enable mask value
A(1): Current graphics display-enable mask value

Series 300 Displays

7 A(0): Graphics write-enable mask value to be set
A(1): Graphics display-enable mask value to be set

20 A(0): X maximum hard clip value to be set]
A(1): Y maximum hard clip value to be set

21 A(0): Current X maximum hard clip value
A(1): Current Y maximum hard clip value

22 A(0): X maximum hard clip value for first absolute locator t HP-HIL Locators

A(1): Y maximum hard clip value for first absolute locator
A(2): X maximum hard clip value for second absolute locator
A(3): Y maximum hard clip value for second absolute locator

A(n): Avalue of — 1 indicates that there are no more absolute locators |

147

148

GET

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F.. THEN. . Yes

This statement reads the specified ASCII file and attempts to store the strings into memory as
program lines. (If using GET with SRM, also refer to the “SRM’" section of this manual.)

file L]
GET specifier - e

append
line number

append
line label

run
line number
run line
label

literal form of file specifier:

file n
name
O

Item Description/Default Re?tz:i]::!t;ieons
file specifier string expression {see drawing)
append line number integer constant identifying a program line | thru 32 766
append line label name of a program line any valid name
run line number integer constant identifying a program line I thru 32 766
run line label name of a program line any valid name
file name literal any valid file name
msus literal (see MASS

STORAGE IS)

GET 149

Example Statements

GET "Georde"
GET Next_prod%,:,180,10

Semantics

When GET is executed, the first line in the specified file is read and checked for a valid line
number. If no valid line number is found, the current program stays in memory and error 68 is
generated. If the GET was attempted from a running program, the program remains active and
the error 68 can be trapped with ON ERROR. If there is no ON ERROR in effect, the program
pauses.

If there is a valid line number at the start of the first line in the file, the GET operation proceeds.
Values for all variables except those in COM are lost and the current program is deleted from
the append line to the end. If no append line is specified, the entire current program is deleted.

As the file is brought in, each line is checked for proper syntax. The syntax checking during GET is
the same as if the lines were being typed from the keyboard, and any errors that would occur during
keyboard entry will also occur during GET. Any lines which contain syntax errors are listed on the
PRINTER IS device. Those erroneous lines which have valid line numbers are converted into
comments and syntax is checked again. If the GET encounters a line longer than 256 characters,
the operation is terminated and error 128 is reported. If any line caused any other syntax error, an
error 68 is reported at the completion of the GET operation. This error is not trappable because the
old program was deleted and the new one is not running yet.

Any line in the main program or any subprogram may be used for the append location. If an
append line number is specified, the lines from the file are renumbered by adding an offset to
their line numbers. This offset is the difference between the append line number and the first
line number in the file. This operation preserves the line-number intervals that exist in the file.
When a line containing an error (or an invalid line number caused by renumbering) is printed
on the PRINTER IS device, the line number shown is the one the line had in the file. Any
programmed references to line numbers that would be renumbered by REN are also renum-
bered by GET. If no append line is specified, the lines from the file are entered without
renumbering.

If a successful GET is executed from a program, execution resumes automatically after a prerun
initialization (see RUN). If no run line is specified, execution resumes at the lowest-numbered
line in the program. If a run line is specified, execution resumes at the specified line. The
specified run line must be a line in the main program segment.

If a successful GET is executed from the keyboard and a run line is specified, a prerun is
performed and program execution begins automatically at the specified line. If GET is executed
from the keyboard with no run line specified, RUN must be executed to start the program. GET
is not allowed from the keyboard while a program is running.

150

GIN[T Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN. .. Yes

This statement establishes a set of default values for variables affecting graphics operations.

Semantics
The following operations are performed when GINIT is executed:

AREA PEN 1

CLIP OFF

CSIZE 5,0.06

LDIR O

LINE TYPE 1,5

LORG 1

MOVE 0,0

PDIR ©

PEN 1

PIVOT ©

GESCAPE CRT,»4 (PEN MODE NORMAL)
VIEWPORT QO sRATIO*100,045100
WINDOW O RATIO*100,0,100

In addition an active plotter or graphics input device is terminated. If the plotter is a file, the file is
closed.

After a GINIT and before a PLOTTER IS statement is executed, the following statements select a
default plotter.

AXES IDRAW RECTANGLE
DRAW IMOVE RPLOT
DUMP GRAPHICS IPLOT SET ECHO
FRAME LABEL SET PEN
GCLEAR MOVE SYMBOL
GLOAD PLOT

GRID POLYGON

GSTORE POLYLINE

GLOAD

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN Yes

This statement loads the contents of an INTEGER array into a frame buffer (the converse of
GSTORE).

int
(6Loan) , o A se (0)+
l I destination

device selector

.. Range
Item Description/Default Restrictions
destination numeric expression, rounded to an integer: (see Glossary)
device selector Default = last CRT plotter
integer name of an INTEGER array. any valid name
array name

Example Statements

GLOAD Picture(#*)

IF Flag THEN GLOAD Arrav (%)
GLOAD CRT +Screen{*)

GLOAD 2B Screen(*)

Semantics

A frame bulffer is an area of memory which contains the digital representation of a raster image. A
monochromatic image has a frame buffer of one bit deep. The Model 236 color monitor has a
four-bit frame buffer which allows sixteen colors. The HP 98627A external color interface has a
three-bit frame buffer which allows eight colors. The 98543A and 98545A display boards have 4
planes, allowing 16 colors, and the 98700 has 4 or 8 planes, allowing 16 or 256 colors,
respectively.

If a destination device is not explicitly specified, the array’s contents are loaded into the current
PLOTTER IS device (if it is a frame buffer) or into the last frame buffer device specified by a
PLOTTER IS statement.

GLOAD operates on active plotting devices. A plotting device is active when it is specified in a
PLOTTER IS statement. In addition, the internal CRT is also activated by any of the following
operations: any pen movement; GCLEAR; GLOAD to the current default destination; GSTORE
from the current default source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESET).

151

152 GLOAD

The array’s contents are loaded into the specified frame buffer if a currently active frame buffer
(CRT) is explicitly specified as the destination. However, if the specified frame buffer is not
activated, error 708 occurs.

The GLOAD is not performed if a non-frame buffer destination which is the current PLOTTER IS
device is explicitly specified. However, if a non-frame buffer destination which is not the current
PLOTTER IS device is specified, error 708 occurs.

Pixel Representation

A pixel is a picture element. Each pixel on a monochromatic display is represented by one bit in
memory; a binary 1 represents a pixel that is on, while a binary O represents a pixel which is off.
Each INTEGER array element represents 16 pixels on a monochromatic display.

Pixels on color displays have different representation. The Model 236 color display requires four
bits to represent each pixel. The optional color monitor (HP 98627) requires three bits to
represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER array
elements necessary to represent the entire display is shown in the following table for each model
and display.

GLOAD

Horizontal | Vertical INTEGER
Model Size Size Elements

216 (HP 9816) 400 300 7500
(monochromatic) ’

220 (HP 9920) 400 300 7500
(HP 98204A)
(HP 98204B)
(monochromatic) 512 390 12 480

226 (HP 9826) 400 300 7500

(monochromatic)

HP 98627A 512 512 49 152
(external color)

236 (HP 9836) 512 390 12 480
{monochromatic)

236 (HP 9836C) 512 390 49 920
(color)

237 (HP 9837) 1024 768 49 152
(HP 98781A)
(bit-mapped,
monochromatic)

35731A (medium- 1024 400 25 600
resolution
bit-mapped,
monochromatic)

35741A(medium- 1024 400 102 400
resolution
bit-mapped,
color, 4 planes)

98781A 1024 768 49152
{(high-resolution
bit-mapped,
monochromatic)

98782A 1024 768 19 6608
(high-resolution
bit-mapped,
color, 4 planes)

98700 1024 768 393 216
(high-resolution
bit-mapped,
color, 8 planes)

The declared array size can be larger or smaller than the graphics memory size; the operation
stops when either graphics memory or the array is exhausted.

153

154 GLOAD

Since any one dimension of an array cannot be more than 32 767 elements, for an array to be
large enough to hold the entire graphics representation, the array may have to be multi-
dimensional. For example,

INTEGER Screen{1:390,1:84,1:2) !or Model 236 Color
INTEGER Screen(1:512,1:32,1:3) lfor HP 98627A Color

Storage Format
The pixel representation on a monochromatic display are stored sequentially in the array using

GSTORE.

The pixel representation for color displays are stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used, regardless of the array
structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2

P5 | P1|P6 | P2 P7 | P3| P8 | P4

HP 98627A color display: Each word contains the blue, green or red representation for 16 pixels.
P in the diagram is the 1-bit color representation of the pixel.

Word 1 P1 P2 | P3 | P4 ... | P16 | BLUE
Word 2 | P1 P2 | P3 | P4 ... | P16 | GREEN
Word 3 | P1 P2 | P3 | P4 ... | P16 | RED
W(?rd 4 | P17 | P18 | P19 | P20 | ... | P32 | BLUE

Storage Format on Multi-Plane Bit-Mapped Displays

GLDAD loads information from an array into the graphics planes in the frame buffer. ‘‘Graphics
planes’ means those planes which have been write-enabled for graphics operations via power-
up, SCRATCH A, or GESCAPE. You can change the graphics write mask with GESCAPE.

In the following paragraphs, reference is made to the “‘highest graphics plane.”” The ‘‘highest
graphics plane’ is that plane in the frame buffer whose corresponding bit in the graphics
write-enable mask has the highest number. For example, the highest graphics plane with a write
mask of binary 1000 is 4. Also note that although bits in a byte are numbered from 0 through 7
(right to left), planes in the frame buffer are numbered 1 through 8.

GLOAD 155

If the highest graphics plane currently enabled is 1 (or none), act like there is 1. The storage

format is:

Word 1 PO P1

P2

P3

P15

Word2 | P16 | P17

P18

P19

P31

If the highest graphics plane currently enabled is between 2 and 4, inclusive, act like there are 4.

The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8, inclusive, act like there are 8.

The storage format is:

Word1 | Po | Po [Po | PO PoIPo|Po|Po]P1|P1|P1|P1|P1|P1|P1|P1|

Word 2 F2|P2[P2|P2[P2|P2|P2|P2ﬂPs\P3|93[P3|P3‘P3[P3|P3|

Images should be GLOADed on the same display and with the same write-enable mask that was
used when the image was GSTOREd. If these guidelines are not observed, the GL0ADed image may

bear no resemblance to the G5TOREd image.

To determine the number of elements needed in an integer array the right size to hold an image,
use the GESCAPE operation selector 3.

156

GOSUB

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN Yes

This statement transfers program execution to the subroutine at the specified line. The specified
line must be in the current context. The current program line is remembered in anticipation of
returning (see RETURN). (Also see the ON... statements.)

s Range
Item I Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

Example Statements

GOSUB 120
IF Numbers THEN GOSUB Process

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

GOTO

This statement transfers program execution to the specified line. The specified line must be in
the current context. (Also see the ON... statements.)

s e Range
Item Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

Example Statements

GOTO 550

GOTO Loop_start
IF Full THEN Exit

157

158

GRAPHICS

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN.. . Yes

This statement turns the graphics display on or off. This statement has no effect on the contents of
the graphics memory, it just controls whether it is displayed or not. At power-on or after
SCRATCH A, the graphics display is off. (Also see DUMP.)

GRAPHICS

Example Statements

GRAPHICS ON
IF Flag THEN GRAPHICS OFF

Semantics

Multi-Plane Bit-Mapped Displays
If you do not understand the concept of write-enable masks or display-enable masks, see GCLEAF
before reading the following paragraph.

GRAPHICS ON/OFF applies only to the graphics display which also is the alpha display. For example,
suppose your configuration consists of a display which has both alpha and graphics, and another
display which has only graphics. In this case, there would be no way, with the GRAPHICS
statement, to turn graphics on or off on the display which has graphics exclusively.

With default alpha and graphics write-masks, the GRAPHICS ON and GRAPHICS OFF statements
have no effect on bit-mapped displays. If designated alpha and graphics write masks do not
overlap, then the statements will enable/disable graphics planes for displaying as with non-bit-
mapped systems. When the write masks overlap, planes that are used only for graphics (not
alpha) are enabled/disabled. For example, if the alpha write-enable mask is binary 1110 and the
graphics write-enable mask is binary 0011, GRAPHICS ON and GRAPHICS OFF would only affect
plane 1. Plane 2 is not affected because it is indicated by both the alpha and graphics write-enable
masks, and planes 3 and 4 are not affected because they are not indicated by the graphics
write-enable mask.

Note
Mixing ALPHA/GRAPHICS ON/OFF with explicit definition of the display-

enable mask may cause the and/or keys to have
unexpected results. The reason for this is that explicit setting of the
display mask is, in a manner of speaking, working ‘‘behind the back”
of the operating system. Thus, you could turn off graphics by mod-
ifying the display-enable mask, and the internal variables which keep
track of (ALPHA) and (_GRAPHICS) keypresses would not—indeed, could
not-have been updated. The reason these variables cannot be up-
dated is that you can set the display mask to a state in which “‘alpha
on’’ is only partially true; some alpha planes are on, and some aren’t.
The same goes for graphics.

GRAPHICS 159

160

GRAPHICS INPUT IS

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an [F... THEN Yes

This statement defines which device is to be used for graphics input in subsequent DIGITIZE, SET
LOCATOR, TRACK IS...ON/OFF, and READ LOCATOR statements.

(omapHICS INPUT IS i 050005,

s Range
Item | Description/Default I Restrictions
device selector

numeric expression, rounded to an integer (see Glossary)
(

digitizer specifier string expression see semantics)

Example Statements

GRAPHICS INPUT IS 706,"HPGL"
GRAPHICS INPUT IS Ds:Hr$
GRAPHICS INPUT IS KBD,"KBD"
GRAPHICS INPUT IS KBD,"TABLET"

Semantics

The specified device is defined to be the graphics input device for subsequent graphics input
statements (DIGITIZE, READ LOCATOR, SET LOCATOR, and TRACK...IS ON). This input
device becomes undefined when a power-up, (RESET), GINIT, or SCRATCH A is executed. The
default input device is KBD, “KBD.

The operating system attempts to use the current VIEWPORT and WINDOW (or SHOW) para-
meters for both the current PLOTTER IS device and the specified GRAPHICS INPUT IS device, so
that the usable areas of the input and output devices correspond in a 1-to-1 mapping. If the aspect
ratios of the input and output devices are different, the input device limits are truncated to match the
output device’s aspect ratio.

If the VIEWPORT statement specifies an area that does not exist on the input device, error 705 will be
reported.

If you specify the keyboard device selector, there are two possibilities for the digitizer specifier. To
specify relative pointing devices (e.g., the cursor keys, knob, or mouse), use “KBD” or “ARROW
KEYS”. For a port path to the Series 500, use the string “ARROW KEYS”. To specify absolute

pointing devices (e.g., HP-HIL tablets or the TouchScreen), use the string “TABLET”. “HPGL”
must be specified if the device selector is anything other than the keyboard select code.

When doing a DIGITIZE, the arrow keys and the knob move the graphics cursor. Otherwise, in
addition to moving the graphics cursor, they perform their normal “‘alpha” functions: scrolling text on
the screen, and moving the alpha cursor within the keyboard entry line.

GRAPHICS INPUT IS 161

HP-HIL Absolute Locators

This statement can specify HP-HIL absolute locators, which include graphics tablets as well as the
Touchscreen. As with relative locators, all devices of this type are lumped together and processed
as if they were a single device. This could lead to interference if two or more of these devices were
connected to the HP-HIL bus. The intent is to support one active absolute locator on the HP-HIL
bus, although careful use will allow more than one. In particular, the GESCAPE values of 20, 21,
and 22 allow use of the HP-HIL Touchscreen on the same bus as a Tablet, provided the stylus is
removed from the Tablet when the Touchscreen is in use.

Absolute Locator Hard Clip Limits

You can set the position of P2—the upper right corner of the digitizing area—on HP-HIL tablets by
using GESCAPE with operation selectors 20 through 22. This is conceptually similar to setting the
P2 point with HPGL commands on HPGL tablets. See GEscaPEfor further information.

162

GRID

This statement draws a full grid pattern. The pen is left at the intersection of the X and Y axes.

Option Required

Keyboard Executable

Programmable

Inan [F.. THEN...

GRAPH
Yes
Yes
Yes

(' 6RID)}
x tick
I| spacing }

y tick

spacing
y axig_j
location

X major
count

y major
count

major -]
tick sizEJ

.. Range
Item Description/Default Restrictions
x tick spacing numeric expression in current units; (see text)
Default = 0, no ticks
y tick spacing numeric expression in current units: (see text)

y axis location

X axis location

X major count

y major count

major tick size

Default = 0. no ticks

numeric expression specifying the location of the
y axis in x-axis units;
Default =0

numeric expression specifying the location of the
X axis in y-axis units;
Default = 0

numeric expression, rounded to an integer, spe-
cifying the number of tick intervals between ma-
jor tick marks;

Default = 1 (every tick is major)

numeric expression, rounded to an integer, spe-
cifying the number of tick intervals between ma-
jor tick marks;

Default = 1 (every tick is major)

numeric expression in graphic display units:
Default = 2

1 thru 32 767

1 thru 32 767

Example Statements
GRID 104104040

GRID Xmins¥YminsXintercertsYintercert s215

Semantics

GRID

Grids are drawn with the current line type and pen number. Major tick marks are drawn as lines
across the entire soft clipping area. A cross tick is drawn at the intersection of minor tick marks.

The X and Y tick spacing must not generate more than 32 768 grid marks in the clip area, or error

20 will be generated. Only the grid marks within the current clip area are drawn.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LDIR.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT

Note 4: RPLOT and IPLOT are affected by PDIR

163

164

GSTORE

Option Required GRAPH
Keyboard Executabel Yes
Programmable Yes
Inan [F... THEN Yes

This statement stores the contents of the frame buffer into an INTEGER array (the converse of
GLOAD).

(GSTORE > ']I arlrnatyegnearme H (*)}"‘l
l l source] () 1

device selector

. Range
Item Description/Default Restrictions
source device selector numeric expression, rounded to an integer; (see Glossary)
Default = last CRT plotter
integer array name name of an INTEGER array) any valid name

Example Statements
GSTORE Screeni*}
IF Done THEN GSTORE ZBsPicture{*)

Semantics

A frame buffer is an area of memory which contains the digital representation of a raster image. A
monochromatic image has a frame buffer of one bit deep. The Model 236 color monitor has a
four-bit frame buffer which allows sixteen colors. The HP 98627A external color monitor has a
three-bit frame buffer which allows eight colors. The 98543A and 98545A display boards have 4
planes, allowing 16 colors, and the 98700 has 4 or 8 planes, allowing 16 or 256 colors,
respectively.

If a source device is not explicitly specified, the array’s contents are loaded from the current
PLOTTER IS device (if it is a frame buffer) or from the last frame buffer device specified by a
PLOTTER IS statement.

GSTORE operates on active plotting devices. A plotting device is active when it is specified in a
PLOTTER IS statement. In addition, the internal CRT is also activated by any of the following
operations: any pen movement; GCLEAR; GLOAD to the current default destination, GSTORE
from the current default source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESET).

The frame buffer’'s contents are loaded into the specified array if a currently active frame buffer
(CRT) is explicitly specified as the source. However. if the specified frame buffer is not activated,
error 708 occurs.

The GSTORE is not performed if a non-frame buffer source which is the current PLOTTER IS
device is explicitly specified. However, if a non-frame buffer source which is not the current
PLOTTER IS device is specified, error 708 occurs.

GSTORE 165

Pixel Representation

A pixel is a picture element. Each pixel on a monochromatic display is represented by one bit in
memory; a binary 1 represents a pixel that is on, while a binary O represents a pixel which is off.
Each INTEGER array element represents 16 pixels on a monochromatic display.

Pixels on color displays have different representation. The Model 236 color display requires four
bits to represent each pixel. The optional color monitor (HP 98627) requires three bits to
represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER array
elements necessary to represent the entire display is shown in the following table for each model
and display.

166 GSTORE

Horizontal | Vertical INTEGER
Model Size Size Elements

216 (HP 9816) 400 300 7500
{(monochromatic)

220 (HP 9920) 400 300 7500
(HP 98204A)
(HP 98204B)
(monochromatic) 512 390 12 480

226 (HP 9826) 400 300 7500

(monochromatic)

HP 98627A 512 512 49 152
{external color)

236 (HP 9836) 512 390 12 480
{monochromatic)

236 (HP 9836C) 512 390 49 920
(color)

237 (HP 9837) 1024 768 49 152
(HP 98781A)
{(bit-mapped,
monochromatic)

35731A {medium- 1024 400 25 600
resolution
bit-mapped,
monochromatic)

35741A(medium- 1024 400 102 400
resolution
bit-mapped,
color, 4 planes)

98781A 1024 768 49152
(high-resolution
bit-mapped,
monochromatic)

98782A 1024 768 19 6608
(high-resolution
bit-mapped,
color, 4 planes)

98700 1024 768 393216
{high-resolution
bit-mapped,
color, 8 planes)

The declared array size can be larger or smaller than the graphics memory size: the operation
stops when either graphics memory or the array is exhaused.

GSTORE 167

Since any one dimension of an array cannot be more than 32 767 elements, for an array to be
large enough to hold the entire graphics representation, the array may have to be multi-
dimensional. For example,

INTEGER Screen{1:340,1:64,1:2) !for Model 236 Color
INTEGER Screen{(1:512,1:32:1:3) !for HP 98627A Color

Storage Format
The pixel representation on a monochromatic display are stored sequentially in the array using

GSTORE.
The pixel representation for color displays are stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used, regardless of the array
structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2

P5 | P1 | P6 | P2 P7 | P3| P8 | P4

HP 98627A color display: Each word contains the blue, green or red representation for 16 pixels. P
in the diagram is the 1-bit color representation of the pixel.

Word 1 P1 P2 | P3 | P4 ... | P16 | BLUE
Word 2 P1 P2 | P3 | P4 ... | P16 | GREEN
Word3 | P1 P2 | P3 | P4 ... | P16 | RED
Wc?rd 4 | P17 | P18 | P19 | P20 | .. | P32 | BLUE

Multi-Plane Bit-Mapped Displays

GSTORE stores information from the graphics planes in the frame buffer into an array. “‘Graphics
planes’’ means those planes which have been write-enabled for graphics via powerup,
SCRATCH A, or GESCAPE.

In the following paragraphs, reference is made to the ‘“‘highest graphics plane.” The “‘highest
graphics plane” is that plane in the frame buffer whose corresponding bit in the graphics
write-enable mask has the highest number. For example, the highest graphics plane with a write
mask of binary 1000 is 4. Also note that although bits in a byte are numbered from O through 7
(right to left), planes in the frame buffer are numbered 1 through 8.

168

GSTORE

If the highest graphics plane currently enabled is 1 (or none), act like there is 1. The storage
format is:

Word 1 PO P1 P2 P3 P15

Word2 | P16 | P17 | P18 | P19 | ... | P31

If the highest graphics plane currently enabled is between 2 and 4. inclusive, act like there are 4.
The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8, inclusive, act like there are 8.
The storage format is:

Word 1 uolpo|PO|Po] Po | Po | Po | PO | P1IP1]P1TP1‘P1IP1JP11Pﬂ

Word 2 Lpz]P2[P2|P2| P2|P2[P2|P2] P3[P3]P3TP3| PaTP3jP3|P37

Images should be cLoADed on the same display and with the same write-enable mask that was
used when the image was G5T0OREd. If these guidelines are not observed, the GLOADed image may
bear no resemblance to the csT0REd image.

To determine the number of elements needed in an integer array the right size to hold an image,
use the GESCAPE operation selector 3.

When using graphics and alpha write masks, you may prefer not to overlap the masks; that is,
have any planes which are simultaneously indicated by both masks. If planes enabled for alpha
overlap those enabled for graphics, some alpha information will be stored along with the graphics
information.

You can conserve space if you are using fewer than the maximum number of planes. For
example, on a 98700 with eight planes, if pens O through 15 only are being used, the graphics
write mask could be set to 15 (binary 00001111) rather than the default of 255 (binary 11111111).
In this way, only half the memory would be required to GSTORE the image. You can change the
graphics write mask with GESCAPE.

Non-Square Pixel Displays

With nonsquare-pixel displays, GSTORE will store all pixels (e.g., all 1024 x 400 pixels), thus
requiring over twice the amount of memory as with a Model 236C. Thisis to insure that any image
GsTORE will appear exactly the same when GLOADed back into the frame buffer. Since alpha uses
the nonsquare pixels as separate elements—not as pairs as in graphics—it is possible to have pixel
pairs with different values in each pixel. If pixel pairs were stored, images with mixed alpha and
graphics could appear blurred when reloaded.

169

IDN

See the MAT statement.

170

IDRAW

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement draws a line from the current pen position to a position calculated by adding the X
and Y displacements to the current pen position.

x displacement ’——@—-—I y displacement |—>|

Item

Description/Default

Range
Restrictions

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements

IDFAW X+350.0

IDFAW Delta_x:Delta_v

Semantics

The X and Y displacement information is interpreted according to the current unit-of-measure.

The line is clipped at the current clipping boundary.

An IDRAW © 0 generates a point. IDRAW updates the logical pen position at the completion of
the IDRAW statement, and leaves the pen down on an external plotter. IDRAW is affected by the

PIVOT transformations.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen

position is updated.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1

The starting point for labels drawn after lines or axes is affected by scalng
Note 2. The starting point for labels drawn after other labels is affected by LDIR

Note 3. The starting point for labels drawn after lines or axes is affected by PIVOT

Note 4: RPLOT and IPLOT are aftected by PDIR

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... No

This statement provides conditional branching.

Cannot be a statement
used during prerun

boolean
D o P o (D o o T
line
label
line
number

T

IF

boolean
expression HTHEN)_A

program
segment

END IF

9

IF

program
segment

T

boolea I () I
expre;;;gn THEN

program
segment

¢

END IF

Item Description/Default

IF.. THEN

Range
Restrictions

boolean expresion numeric expression; evaluated as true if

non-zero and false if zero

line label name of a program line

line number integer constant identifying a program line
statement a programmable statement

program segment any number of contiguous program lines not

program or subprogram

containing the beginning or end of a main

any valid name
1 thru 32 766

(see following list)

171

172

IF...THEN

Example Program Segments

130 IF Flag THEN Next_file
160 IF Pointer<l THEN Pointer=1l

280 IF First_pass THEN

380 Flag=0
GO0 INPUT "Command?" sCmd%
B10 IF LEN(Cmd%$) THEN GOSUB Parse

BZ0O END IF

1000 IF X<0 THEN

1010 BEEP

1020 DISP "ImPprorper Ardument"”
1030 ELSE

1040 Root=80R (X

1050 END IF

Semantics

[f the boolean expression evaluates to 0, it is considered false; if the evaluation is non-zero, it is
considered true. Note that a boolean expression can be constructed with numeric or string
expressions separated by relational operators, as well as with a numeric expression.

Single Line IF...THEN

If the conditional statement is a GOTO, execution is transferred to the specified line. The
specified line must exist in the current context. A line number or line label by itself is considered
an implied GOTO. For any other statement, the statement is executed, then program execution
resumes at the line following the IF... THEN statement. If the tested condition is false, program
execution resumes at the line following the I[F... THEN statement, and the conditional statement
is not executed.

Prohibited Statements

The following statements must be identified at prerun time or are not executed during normal
program flow. Therefore, they are not allowed as the statement in a single line IF... THEN
construct.

CASE END IF IF REM
CASE ELSE END LOOP IMAGE REPEAT
COM END SELECT INTEGER SELECT
DATA END WHILE LOOP SUB
DEF FN EXIT IF NEXT SUBEND
DIM FNEND OPTION BASE UNTIL
ELSE FOR REAL WHILE

END

IF..THEN 173

When ELSE is specified, only one of the program segments will be executed. When the
condition is true, the segment between IF... THEN and ELSE is executed. When the condition is
false, the segment between ELSE and END IF is executed. In either case, when the construct is
exited, program execution continues with the statement after the END IF.

Branching into an IF...THEN construct (such as with a GOTO) results in a branch to the
program line following the END IF when the ELSE statement is executed.

The prohibited statements listed above are allowed in multiple-line IF...THEN constructs.
However, these statements are not executed conditionally. The exceptions are other IF... THEN
statements or constructs such as FOR...NEXT, REPEAT...UNTIL, etc. These are executed
conditionally, but need to be properly nested. To be properly nested, the entire construct must be
contained in one program segment (see drawing).

174

IMAGE

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN. .. No

This statement provides image specifiers for the ENTER, OUTPUT, DISP, LABEL, and PRINT

statements. Refer to the appropriate statement for details on the effect of the various image
specifiers.

GE)
IMAGE)

@

IMAGE] 1

statement items |

repeat
factor

IMAGE
statement items

. Range
Item Description/Default Restrictions

IMAGE statement literal (see drawing)
items
repeat factor integer constant 1 thru 32 767
literal string composed of characters from the quote mark not allowed

keyboard, including those generated

using the ANY CHAR key

Example Statements

IMAGE 4Z2.DD 3% K s/
IMAGE "Result = ",SDDDE»3 (XX Zd)
IMAGE #,B

IMAGE statement items

IMAGE 175

06(H0060

.o

repeat
factor

Radix specifier cannot

Shaded items

require IO

be used without a
digit specifier.

%

ESZ

e

ESZZZ

176

IMOVE Option Required GRAPH

Keyboard Executable Yes
Programmable Yes
Inan [F... THEN. . Yes

This statement lifts the pen and moves it from the current pen position to a position calculated by
adding the specified X and Y displacements to the current pen position.

IMOVE x displacement I-——@—-I y displacementj——ﬂ

Range
Description/Default e
Item | scription/ Restrictions
x displacement numeric expression in current units —
y displacement numeric expression in current units —

Example Statements
IMOVE X+50 40
IMOVE Delta_-x:Delta_v

Semantics
The X and Y displacements are interpreted according to the current unit-of-measure. IMOVE is
affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip limits, no
physical pen movement is made: however, the logical pen is moved the specified displacement.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1 The starting point for latels drawn after ines or axes is affected by scaling
Note 2 The starting point for labels drawn after other labels is affectec by LDIR
Note 3 The starting point for labels drawn after lines or axes is affected by PIVOT
Note 4 RPLOT and IPLOT are affected by PDIR

Option Required PDEV INDENT

Keyboard Executable Yes
Programmable No
Inan IF...THEN... No

This commands indents your program to reflect the structure that results from its constructs.

(' INDENT } > y >
‘ I starting })
column
©
Item Description/Default Rap ge
Restrictions

0 thru Screen Width — 8
0 thru Screen Width—8

starting column integer constant; Default = 6

increment integer constant; Default = 2

Example Statements

INDENT
INDENT 8.4

Semantics

The starting column specifies the column in which the first character of the first statement of each
context appears. The increment specifies the number of spaces that the beginning of the lines
move to the left or right when the nesting level of the program changes. Note that a line label may
override the indentation computed for a particular line. The INDENT command does not move
comments which start with an exclamation point, but it does move comments starting with REM.
However, if a BASIC program line is moved to the right a comment after it may have to be moved
to make room for it. In both of these cases (line labels and comments), the text moves only as far
as is necessary; no extra blanks are generated.

Indenting a program may cause the length of some of its lines to become longer than the machine
can list. This condition is indicated by the presence of an asterisk after the line numbers of the
lines which are overlength. If this occurs, the program will run properly, STORE properly and
LOAD properly. However, you cannot do a SAVE, then a GET. Doing an INDENT with smaller
values will alleviate this problem.

Indentation occurs after the following statements:

FOR REPEAT
LOOP WHILE
SUB SELECT
IF...THEN! DEF FN

1 This is only true for IF... THEN statements where the THEN is followed by an end-of-line or an exclamation point.

177

178 INDENT

The following statements cause a one-line indentation reversal; thatis, indentation is reversed for
these statements but re-indented immediately after them:

CASE EXIT IF
CASE ELSE FNEND
ELSE SUBEND

Indentation is reversed before the following statements:

END IF END WHILE
END LOOP NEXT
END SELECT UNTIL

Indentation remains the same from line to line for all other statements.

Improperly matched nesting will cause improper indentation. Deeply nested constructs may
cause indentation to exceed Screen Width —8. However, visible indentation is bounded by
Starting Column and Screen Width — 8. If a large Increment is used, indentation may attempt to
go beyond Screen Width —8. This will not be allowed to occur, but an internal indentation
counter is maintained, so construct-forming statements will have matching indentation.

179

INITIALIZE

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement prepares mass storage media for use by the computer. When INITIALIZE is
executed, any data on the media is lost. (If using INITIALIZE with SRM, also refer to the “SRM”
section of this manual.)

(INITIALIZE] meaia specifier | -
factor
format
O
specifier
literal form of media specifier:
— (OO HO—
literal form of RAM volume specifier:
OO O—G C
O
number
. . Range Recommended
Item Description/Default Restrictions Range
media specifier string expression (see drawing) —
interleave factor numeric expression, rounded to an integer; —-32 768 1 thru 15
Default = device dependent (see table) thru +32 767
format option numeric expression device —
Default = O dependent
RAM volume string expression (see drawing) —_—
specifier
unit size numeric expression, rounded to an integer; 4 thru 32 767 memory
Specifies 256-byte sectors. dependent
Default = 1056
msus literal (see MASS —
STORAGE IS)

Example Statements

INITIALIZE ":INTERNAL"Y
INITIALIZE Disc%+2

INITIALIZE ":MEMORY 0" ,Sectors
INITIALIZE ":HP,701" 0.4

180

Semantics

Any media used by the computer must be initialized before its first use. Initialization rewrites the
directory, eliminating any access to old data. The media is partitioned into physical records. The
quality of the media is checked during initialization. Defective tracks are ‘‘spared’ (marked so
that they will not be used).

The device type of the internal 5.25 inch disc drive is INTERNAL: the interface select code is 4;
the unit number of the right-hand drive is 0; the left-hand drive is 1.

The interleave factor establishes the distance in physical records between consecutively num-
bered records. The interleave factor is ignored if the mass storage device is not a disc. If you
specify O for the interleave factor, the default for the device is used.

Device Type | ;e
INTERNAL 1
CS80 see Note
HP9121 2
HP913X (floppy) 4
HP913X (hard) 9
HP9885 1
HP9895 3
HP8290X 4

Note

CS80 discs use the current interleave as the default. If the disc is
uninitialized. the interleave recommended for that disc is used. Fac-
tory-shipped interleave is 1 for the HP 7908. HP 7911. HP 7912 and
HP 7914 discs. An uninitialized HP 9122 disc has a default interleave
of 2.

Some mass storage devices allow you to select the format to which the disc is initialized. Omitting
the format option or specifying a format option of 0 initializes the disc to its default format. Refer
to the disc drive manual for format options available with your disc drive. For example, when
initializing a single sided flexible disc on the HP 9122 double sided flexible disc drive use format
option 4.

Initializing EPROM (Requires EPROM)

In order to initialize an EPROM unit. it must be completely erased. The select code specified in the
INITIALIZE statement must be the select code of the EPROM Programmer card currently
connected to the EPROM memory card; if not, error 72 is reported.

The unit number must be one greater than the greatest unit number of any initialized EPROM unit
currently in the system. For example, if the greatest unit number of an EPROM unit in the system
is 3, then the unit to be initialized must be unit number 4.

181

Option Required None INPUT

Keyboard Executable No
Programmable Yes
In an IF... THEN Yes

This statement is used to assign keyboard input to program variables.

(D
(U/

CheedD~0

Expanded diagram

(INPUT) (>
O==er0

r

string .
name o o

begining
® O

-

position
input
items 3
O engen
length

X

- = (%))

numeric
name

subscript

INPUT

L. Range
Item Description/Default Restrictions
prompt a literal composed of characters from the —
keyboard. including those generated using the
ANY CHAR key:
Default = question mark
string name name of a string variable any valid name
subscript numeric expression, rounded to an integer - 32 767 thru + 32 767
(see “array’ in Glossary)
beginning position numeric expression, rounded to an integer 1 thru 32 767
(see “‘substring” in
Glossary)
ending position numeric expression, rounded to an integer 0 thru 32 767
{see “‘substring’” in
Glossary)
substring length numeric expression, rounded to an integer 0 thru 32 767
(see “‘substring’” in
Glossary)
numeric name name of a numeric variable any valid name

Example Statements
INPUT "Name?" »N$,"ID Number?" +1d
INPUT Arrav (%)

Semantics

Values can be assigned through the keyboard for any numeric or string variable, substring. array,
or array element.

A prompt, which is allowed for each item in the input list, appears on the CRT display line. If the
last DISP or DISP USING statement suppressed its EOL sequence, the prompt is appended to the
current display line contents. If the last DISP or DISP USING did not suppress the EOL sequence,
the prompt replaces the current display line contents.

Not specifying a prompt results in a question mark being used as the prompt. Specifying the null
string (" ") for the prompt suppresses the question mark.

To respond to the prompt, the operator enters a number or a string. Leading and trailing blank
characters are deleted. Unquoted strings may not contain commas or quote marks. Placing
quotes around an input string allows any characters to be used as input. If " is intended to be a
character in a quoted string, use " ".

Multiple values can be entered individually or separated by commas. Press the (CONTINUE),
(_ReTURN), (EXECUTE). (ENTER) or ((STEP) after the final input response. Two consecutive commas
cause the corresponding variable to retain its original value. Terminating an input line with a
comma retains the old values for all remaining variables in the list.

INPUT

The assignment of a value to a variable in the INPUT list is done as soon as the terminator
(comma or key) is encountered. Not entering data and pressing (CONTINUE), (ENTER), (_EXECUTE),
("RETURN), or (STEP) retains the old values for all remaining variables in the list.

1f (CONTINUE), (ENTER), (EXECUTE), or (_RETURN) is pressed to end the data input, program execution
continues at the next program line. If is pressed, the program execution continues at the
next program line in single step mode. (If the INPUT was stepped into, it is stepped out of, even if
(conTINUE), (ENTER), ((EXECUTE), or (_RETURN) is pressed.)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array are accepted in row
major (right most subscript varies most rapidly).

Live keyboard operations are not allowed while an INPUT is awaiting data entry. (PAUSE) or ((STOP)
on an HP 46020A keyboard can be pressed so live keyboard operations can be performed. The
INPUT statement is re-executed, beginning with the first item, when (CONTINUE) or (STEP) is press-
ed. All values for that particular INPUT statement must be re-entered.

ON KBD, ON KEY and ON KNOB events are deactivated during an INPUT statement. Errors do
not cause an ON ERROR branch. If an input response results in an error, re-entry begins with the
variable which would have received the erroneous response.

183

184

INT

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This function returns the greatest integer which is less than or equal to the expression. The
result will be of the same type (REAL or INTEGER) as the argument.

numeric
expression

Example Statements

Whole=INT{(Number)
IF X/Z2=INT(}¥/2) THEN Even

INTEGER

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... No

This statement declares INTEGER variables, dimensions INTEGER arrays, and reserves mem-
ory for them. (For information about INTEGER as a secondary keyword, see the ALLOCATE,
COM, DEF FN, or SUB statements.)

(N
A]
()
(N
(- bouna)
©
[tem Description/Default Range
P Restrictions
numeric name name of a numeric variable any valid name
lower bound integer constant; —32 767 thru +32 767
Default = OPTION BASE value (0 or 1) {see “‘array” in Glossary)
upper bound integer constant —32 767 thru +32 767
(see ‘“‘array’ in Glossary)

Example Statements
INTEGER I +J:K

INTEGER Array(-128:255)
INTEGER A(409B) BUFFER

Semantics

An INTEGER variable (or an element of an INTEGER array) uses two bytes of storage space.
An INTEGER array can have a maximum of six dimensions. The maximum number of elements
is a function of your computer’s memory size, but no single dimension can have more than
32 767 total elements.

Declaring Buffers
To declare INTEGER variables to be buffers, each variable’s name must be followed by the
keyword BUFFER,; the designation BUFFER applies only to the variable which it follows.

185

186

INTENSITY

See the AREA and SET PEN statements.

INTERACTIVE

See the RESUME INTERACTIVE and SUSPEND INTERACTIVE statements.

INTR

See the OFF INTR and ON INTR statements.

INV

See the MAT statement.

rapt IPLOT

Option Required

Keyboard Executable Yes
Programmable Yes
In an [F.. THEN Yes

This statement moves the pen from the current pen position to the point specified by adding the
specified X and Y displacements to the current pen position. It can be used to move without
drawing a line, or to draw a line, depending on the pen control parameter.

X y
IPLOT displacement ° displacement
pen
control

X

e Range
Item Description/Default Restrictions

x displacement numeric expression, in current units —

y displacement numeric expression, in current units —

pen control numeric expression, rounded to an integer; | —32 768 thru +32 767
Default=1 (down after move)

array name name of two-dimensional, two-column or three- any valid name
column numeric array. Requires GRAPHX.

Example Statements
IPLOT XY sPen

IPLOT -5,12

1PLOT Share(*) FILL JEDGE

Semantics

Non-Array Parameters
The specified X and Y displacement information is interpreted according to the current unit-of-
measure. Lines are drawn using the current pen color and line type.

The line is clipped at the current clipping boundary. IPLOT is affected by PIVOT and PDIR
transformations.

If none of the line is inside the current clip limits, the pen is not moved, but the logical pen position
is updated.

187

188

IPLOT

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1 The starting point for labels drawn after lines or axes is affected by scaing
Note 2. The starling point for labels drawn after other labels is affected by LDIR
Note 3. The starting point for labels drawn after lines or axes is affected by PIVOT
Note 4. RPLOT and IPLOT are a'fected by PDIR

The optional pen control parameter specifies the following plotting actions; the default value is
+1 (down after move).

Pen Control Parameter

Pen Control | Resultant Action
—Even Pen up before move
—0dd Pen down before move
+ Even Pen up after move
+0dd Pen down after move

Thatis, evenis up. odd is down. positive is after pen motion, negative is before pen motion. Zero
is considered positive.

Array Parameters

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the array
is reached, or when the value in the third column is an even number less than three, or in the
ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the IPLOT statement itself, it causes the polygons defined
within it to be filled with the current fill color and/or edged with the current pen color. If polygon
mode is entered from within the array, and the FILL/EDGE directive for that series of polygons
differs from the FILL/EDGE directive on the IPLOT statement itself, the directive in the array
replaces the directive on the statement. In other words, if a ‘‘start polygon mode’” operation
selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether specified by a
keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the IPLOT statement, FILL must occur first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be edged,
regardless of the directives on the statement.

IPLOT 189

When using an IPLOT statement with an array, the following table of operation selectors applies.
An operation selector is the value in the third column of a row of the array to be plotted. The array
must be a two-dimensional, two-column or three-column array. If the third column exists, it will
contain operation selectors which instruct the computer to carry out certain operations. Polygons
may be defined, edged (using the current pen), filled (using the current fill color), pen and line
type may be selected, and so forth. See the list below.

Operation
Column 1 Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same manner as
the third parameter in a non-array IPLOT statement. As mentioned above, even means lift the
pen up, odd means put the pen down, positive means act after pen motion, negative means act
before pen motion. Zero is considered positive.

Selecting Pens
The operation selector of 3 is used to select pens. The value in column one is the pen number

desired. The value in column two is ignored.

Selecting Line Types

The operation selector of 4 is used to select line types. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends before a
single occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is
evaluated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works

identically to the AREA PEN statement. Column one contains the pen number.

190

[PLOT

Defining a Fill Color

Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively. and column three has the value 14. Following this
row in the array (not necessarily immediately). is a row whose operation selector in column three
has the value of 15. The first column in that row contains the blue value. These numbers range
from 0 to 32 767. where 0 is no color and 32 767 is full intensity. Operation selectors 14 and 15
together comprise the equivalent of an AREA INTENSITY statement, which means it can be used
on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation selector
14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The {irst column is encoded in the following manner. There
are three groups of five bits right-justified in the word. that is, the most significant bit in the word is
ignored. Each group of five bits contains a number which determines the intensity of the
corresponding color component, which ranges from zero to sixteen. The value in each field will
be sixteen minus the intensity of the color component. For example. if the value in the first
column of the array is zero, all three five-bit values would thus be zero. Sixteen minus zero in all
three cases would turn on all three color components to full intensity, and the resultant color
would be a bright white.

Assuming you have the desired intensities for red, green, and blue ranging from zero to one in the
variables k. G, and B, respectively. the value for the first column in the array could be defined
thus:

Arrav(Rows11=SHIFT{IB#(1-B) - 10)+8HIFT(1G*#(1-G) :-3)1+16%{1-R}

If there is a pen color in the color map identical to that which you request here. that non-dithered
color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons

A six, ten, or eleven in the third column of the array begins a *‘polygon mode. If the operation
selector is 6, the polygon will be filled with the current fill color. If the operation selector is 10, the
polygon will be edged with the current pen number and line type. If the operation selectoris 11,
the polygon will be both filled and edged. Many individual polygons (series of draws separated by
moves) can be filled without terminating the mode with an operation selector 7. The first and
second columns are ignored; therefore they should not contain the X and Y values of the first
point of a polygon.

IPLOT 191

Operation selector 7 in the third column of a plotted array terminates definition of a polygon to be
edged and/or filled and also terminates the polygon mode (entered by operation selectors 6, 10,
or 11). The values in the first and second columns are ignored, and the X and Y values of the last
data point should not be in them. Edging and/or filling will begin immediately upon encountering
this operation selector.

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot be
changed from within the IPLOT statement, so one probably would not have more than one
operation selector 12 in an array to IPLOT, since the last FRAME will overwrite all the previous
ones.

Premature Termination

Operation selector 8 causes the IPLOT statement to be terminated. The IPLOT statement will
successfully terminate if the actual end of the array has been reached, so the use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility reasons.
Operation selectors less than — 2 are notignored. If the value in the third column is less than zero,
only evenness/oddness is considered.

192

IVAL

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function converts a binary, octal, decimal, or hexadecimal string expression into an

INTEGER.

string

. Range
Item i Description/Default Restrictions
string argument string expression, containing digits valid for the (see table)
specified base
radix numeric expression, rounded to an integer 2,8,10,or 16

Example Statements

Number=IUVAL("FDFO" 4+18)
I=IVAL("1111111111111110"42)
DISP IVAL(Octal$:8)

Semantics

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2, 8, 10,
or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two’s-complement form. If all 16 digits are specified and the
leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two’s-complement form. If all 6
digits are specified, and the leading digit is a 1, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.
Hex strings are presumed to be in the hex representation of the two’s-complement binary form.

The letters A through F may be specified in either upper or lower case. If all 4 digits are specified
and the leading digit is 8 through F the returned value is negative.

IVAL

Radix Base String Range String Length
2 binary 0thru 1111111111111111 1 to 16 characters
8 octal 0 thru 177777 1 to 6 characters
10 decimal — 32768 thru +32768 1 to 6 characters
16 hexadecimal | O thru FFFF 1 to 4 characters
Radix | Legal Characters Comments
2 +,0,1 —
8 +,0,1,2,.3,4,5,6,7 | Range restricts the leading character.
Sign must be a leading character.
10 +,-,0,1,2,3,4,5, | Signs must be a leading character.
6,7,8,9
16 +,0,1,2,3,45,6,7, | Ala=10,B/b = 11,C/c = 12, D/d =13
89,ABC,DEF, E/le = 14, F/f = 15

a,b,c,d,ef

193

194

IVAL$S

Option Required None

Keyboard Executable Yes

Programmable Yes

Inan IF... THEN... Yes
This function converts an INTEGER into a binary, octal, decimal. or hexadecimal string.

© O ®
Item Description/Default Range
Restrictions
“16-bit” argument numeric expression, rounded to an integer (see table)

radix numeric expression, rounded to an integer 2,8, 10, 0or16

Example Statements
Fe=IVAL$(-1,16)
Binary$=IVALS$ (Count DIV 256,2)

Semantics

The rounded argument must be a value that can be expressed (in binary) using 16 bits or less.

The radix must evaluate to be 2, 8, 10, or 16; representing binary, octal, decimal, or hexadecimal

notation.

If the radix is 2, the returned string is in two’s-complement form and contains 16 characters. If the
numeric expression is negative, the leading digit will be 1. If the value is zero or positive there will

be leading zeros.

If the radix is 8, the returned string is the octal representation of the two’s-complement binary

form and contains 6 digits. Negative values return a leading digit of 1.

If the radix is 10, the returned string contains 6 characters. Leading zeros are added to the string if

necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two’s-complement
binary form and contains 4 characters. Negative values return a leading digit in the range 8 thru F.

Radix Base Range of Returned String String Length
2 binary 0000000000000000 16 characters
thru
1111111111111111
8 octal 000000 thru 177777 6 characters
10 decimal — 32768 thru 032768 6 characters
16 hexadecimal | 0000 thru FFFF 4 characters

195

KBD
Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This INTEGER function returns a 2, the select code of the keyboard.

Example Statements

STATUS KBDiKbd_status
OUTPUT KBDiClear%s

196

KBD$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an I[F.. THEN. .. Yes

This function returns the contents of the buffer established by ON KBD.

Example Statements
Keys$=KBD%
IF Active THEN Command$=Command$RKBD$%

Semantics

When an ON KBD branch is in effect, all subsequent keystrokes are trapped and held in a special
“keyboard’’ buffer. The KBD$ function returns the contents of this buffer and then clears it. A
null string is returned if the buffer is empty or no ON KBD branch is active.

Non-ASCII keys are stored in the buffer as two bytes; the first has a decimal value of 255, and the
second specifies the key. Pressing and a non-ASCII key simultaneously generates three
bytes; the first two have a decimal value of 255, and the third specifies the key. See the Second
Byte of Non-ASCII Key Sequences table in the ‘‘Useful Tables”” section for a list of these
keycodes.

The buffer can hold 256 characters. Further keystrokes are not saved and produce beeps. An
overflow flag is set after the buffer is full. This flag can be checked by reading keyboard status
register 5 and is cleared by reading the status register SCRATCH A. and a operation.

The buffer is cleared by KBD$. OFF KBD. SCRATCH. SCRATCH A. INPUT. LINPUT. ENTER 2.
and a operation.

KEY

See the OFF KEY and ON KEY statements.

KNOB

See the OFF KNOB and the ON KNOB statements.

KNOBX

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This function returns the net number of horizontal knob pulses counted since the last time the
KNOBX counter was zeroed.

Example Statements
Position=KNOBX
IF KNOBX<0 THEN BacKwards

Semantics

Sampling occurs during the time interval established by the ON KNOB statement. The counter
is zeroed when the KNOBX function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts; counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition, KNOBX returns zero.

Counts are accumulated by the KNOBX function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to —127 thru +128. The limits of the
KNOBX function are —32 768 thru +32 767.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is loaded.

Note

KNOBX functions differently if BIN file KNB2_0 is loaded. Refer to
the Knob section in Chapter 15 of the BASIC Programming Tech-
niques manual for more information.

197

198

KNOBY

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This function returns the net number of vertical knob pulses counted since the last time the
KNOBY counter was zeroed.

Example Statements
Fosition=KNOBY
IF KNOBY<0 THEN Backwarde

Semantics

Sampling occurs during the time interval established by the ON KNOB statement. The counter is
zeroed when the KNOBY function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts: counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition. KNOBY returns zero.

Counts are accumulated by the KNOBY function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to — 127 thru + 128. The limits of the
KNOBY function are —32 768 thru + 32 767.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is loaded.

Note

KNOBY functions differently if BIN file KNB2_0 is loaded. Refer to
the Knob section in Chapter 15 of the BASIC Programming Tech-
niques manual for more information.

199

LABEL

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan [F... THEN... Yes

This statement produces alphanumeric labels on graphic devices. (For information about LABEL
as a secondary keyword, see the ON KLY statement.)

label
items

LABED

Expanded diagram

(LABEL) > -
s - -
image 1line __‘J
number
')
E
o
+
ﬂ< image line
P label
o
o
E
- -
image
L specifier
™ J
A\
-
) O
string »l
" expression L
€
7
+
A string
P array name
a
a
0
- numeric
° expression s
trailing punctuation
not allowed with USING
numeric
'l array name | '((%)) ’
® ®
~

tab function not allowed with USING

literal form of image specifier:

Oy
image 1] n
specifier list |

image
specifier 1list

200 LABEL

image specifier list

jé@é@

‘/\I

> ——(D } -
repeat
factor

repeat repeat
factor) factor
i s ‘1 ; ;“]m J

repea S
factorf

Shaded items
require IO

Radix specifier cannot
be used without a
digit specifier

Item

Description/Default

LABEL

Range
Restrictions

image line number
image line label
image specifier
string array name
numeric array name
image specifier list
repeat factor

literal

integer constant identifying an IMAGE statement
name identifying an IMAGE statement

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of characters from the
keyboard, including those generated using the
ANY CHAR key

Example Statements

LABEL Numberss»Strinds
LABEL USING "SZ.DD"3iMonev

Semantics

1 thru 32 766
any valid name
(see drawing)
any valid name
any valid name
(see next drawing)
1 thru 32 767

quote mark not allowed

The label begins at the current logical pen position, with the current pen. Labels are clipped at the
current clip boundary. Other statements which affect label generation are PEN, LINE TYPE,
PIVOT, CSIZE. LORG, and LDIR. The current pen position is updated at the end of the label

operation.

Standard Numeric Format
The standard numeric format depends on the value of the number being output. If the absolute
value of the number is greater than or equal to 1E —4 and less than 1E + 6, it is rounded to 12
digits and output in floating point notation. If it is not within these limits, it is output in scientific
notation. The standard numeric format is used unless USING is selected, and may be specified by
using K in an image specifier.

201

202 LABEL

Automatic End-Of-Line Sequence

After the label list is exhausted, an End-of-Line (EOL) sequence is sent to the logical pen. unless it
is suppressed by trailing punctuation or a pound-sign image specifier. The EOL sequence is also
sent after every 256 characters. This ‘‘plotter buffer exceeded’ EOL is not suppressed by trailing
punctuation, but is suppressed by the pound-sign specifier.

Control Codes
Some ASCII control codes have a special effect in LABEL statements.

Character | Keystroke Name Action

CHR$(8) CTRL-H backspace Back up the width of one char-
acter cell.

CHR$(10) | CTRL-J linefeed Move down the height of one

character cell.

CHR$(13) | CTRL-M carriage return | Move back the length of the
label just completed.

Any control character that the LABEL statement does not recognize is treated as an ASCII blank
[CHR$(32)].

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1. The starting point for labels drawn after lines or axes is affected by scaling
Note 2. The starting point for labels drawn after other labels is affected by LDIR
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT
Note 4. RPLOT and IPLOT are affected by PDIR

Arrays
Arrays may be output as labels by using the asterisk specifier. They are output in row-major order
(right-most subscript varies most rapidly) and their format depends on the label mode selected.

LABEL 203

LABEL Without Using

If LABEL is used without USING, the punctuation following an item determines the width of the
item’s label field; a semicolon selects the compact field, and a comma selects the default label
field. When the label item is an array with the asterisk array specifier, each array element is
considered a separate label item. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the label field to be used for the label item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are output with
one trailing blank. String items are output with no leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is output with one leading blank if the number is positive, or with a minus sign if the
number is negative, whether in compact or default field.

LABEL With Using

When the computer executes a LABEL USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the label items, the field specifier is acted upon without accessing
the label list. When the field specifer requires characters, it accesses the next item in the label list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
label item. If the image specifiers are exhausted before the label items, they are reused, starting at
the beginning.

If a numeric item requires more decimal places to the left of the decimal point than provided by
the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used, and
can generate unexpected overflows of the image field. If the number contains more digits to the
right of the decimal point than are specified. it is rounded to fit the specifier.

[f a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

204 LABEL

Effects of the image specifiers on the LABEL statement are shown in the following table:

Image
Specifier | Meaning)
K Compact field. Outputs a number or string as a label in standard form with no leading or
trailing blanks.
-K Same as K.
H Similar to K, except the number is output using the European number format (comma
radix). (Requires 10)
-H Same as H. (Requires 10)
S Outputs the number’s sign (+ or —) as a label.
Outputs the number’s sign as a label if negative, a blank if positive.
D Outputs one digit character as a label. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will occupy a leading digit position. If
a sign is output, it will “‘float” to the left of the left-most digit.
Z Same as D, except that leading zeros are output.
* Same as Z, except that asterisks are output instead of leading zeros. (Requires
10)
Outputs a decimal-point radix indicator as a label.
R Outputs a comma radix indicator as a label (European radix). (Requires 10)
E Outputs as a label: an E, a sign. and a two-digit exponent.
ESZ Outputs as a label: an E. a sign. and a one-digit exponent.
ESZ7Z Same as E.
ESZZ77 Outputs as a label: an E. a sign, and a three-digit exponent.

LABEL 205

Image
Specifier | Meaning

A Outputs a string character as a label. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are ignored.

X Outputs a blank as a label.
literal Outputs as a label the characters contained in the literal.
B Outputs as a label the character represented by one byte of data. This is similar to the CHR$

function. The number is rounded to an INTEGER and the least-significant byte is sent. If the
number is greater than 32 767, then 255 is used: if the number is less than —32 768, then O
is used.

W Outputs as a label two characters represented by the two bytes of a 16-bit, two's-
complement integer. The corresponding numeric item is rounded to an INTEGER. If it is
greater than 32 767, then 32 767 is used.: if it is less than — 32 768, then — 32 768 is used.
The most-significant byte is sent first.

Y Same as W. {Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the last
label item.

% Ignored in LABEL images.

+ Changes the automatic EOL sequence that normally follows the last label item to a single

carriage-return. (Requires 10.)

- Changes the automatic EOL sequence that normally follows follows the last label item to a
single line-feed. (Requires 1O)

Sends a carriage-return and a line-feed to the PLOTTER IS device.
L Same as /.
@ Sends a form-feed to the PLOTTER IS device: produces a blank.

206

LDIR . .
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement defines the angle at which a label or symbol is drawn. The angle is interpreted as
counterclockwise. from horizontal. The current angle mode is used.

(@ {r]

. Range
Item | Description/Default \ Restrictions
angle numeric expression in current units of angle; (same as COS)

Default = 0

Example Statements

LDIR 890
LDIR ACS(Side)

Semantics
LDIR affects the appearance of LABEL. LABEL USING and SYMBOL output.

The angle is interpreted as shown below.

LDIR EXAMPLES (in Degrees)

Ny
é\/
&
%
@

81 oId’1 LDIR @

LDIR S0
¥a
v

&
@ce oI
©

207

LEN

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This function returns the current number of characters in the argument. The length of the null
string (" ")is 0.

string
expression

Example Statements

Last=LEN(Strinds$)
IF NOT LEN(A%) THEN Emptvy

208

LET

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F.. THEN... Yes

This is the assignment statement, which is used to assign values to variables.

I numeric I

@

string $

| name I

~f _ numeric
- expression i'

name

Item

subscript

_ string
tp - expression

beginning
pcsition

Description/Default

ending
position
substring
length

Range
Restrictions

numeric name
string name

subscript

beginning position

ending position

substring length

name of a numeric variable
name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements

LET Number=33

Arrav(I+1)=Arrav(I)/2
Strindgd="Hello Scott"
AF(7)L1321=CHR&(Z27)R"Z"

any valid name
any valid name

-32 767 thru +32 767
(see “‘array’’ in Glossary)

1 thru 32 767
(see ‘‘substring’’ in Glossary)

0 thru 32 767
(see “‘substring’’ in Glossary)

0 thru 32 767
(see “‘substring’’ in Glossary)

LET

Semantics

The assigment is done to the variable which is to the left of the equals sign. Only one assign-
ment may be performed in a LET statement; any other equal signs are considered relational
operators, and must be enclosed in a parenthetical expression (i.e. A=A+ (B=1)+5). A vari-
able can occur on both sides of the assignment operator (i.e. I=1+1 or
Sources=Source$dTempr$).

A real expression will be rounded when assigned to an INTEGER variable, if it is within the
INTEGER range. Out-of-range assignments to an INTEGER give an error.

The length of the string expression must be less than or equal to the dimensioned length of the
string it is being assigned to. Assignments may be made into substrings, using the normal rules
for substring definition. The string expression will be truncated or blank-filled on the right (if
necessary) to fit the destination substring when the substring has an explicitly stated length. If
only the beginning position of the substring is specified, the substring will be replaced by the
string expression and the length of the recipient string variable will be adjusted accordingly;
however, error 18 is reported if the expression overflows the recipient string variable.

If the name of the variable to the left of the equal sign begins with AND, DIV, EXOR, MOD or OR (the
name of an operator) and the keyword LET is omitted. the prefix must have at least one uppercase
letter and one lowercase letter in it. Otherwise, a live keyboard execution is attempted and fails, even
though the line number is present.

209

210

LEXICAL ORDER IS

Option Required LEX
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement defines the collating sequence for all string relational operators and operations.

(LEXICAL ORDER 1S)——.@ -
Gy a—

array
)

. Range
Item i Description/Default | Restrictions
array name the name of a one-dimensional INTEGER array, any valid name
with at least 257 elements
Examples

LEXICAL ORDER IS FRENCH
LEXICAL ORDER IS Lex_-tabkle(x)

Semantics

The STANDARD lexical order is determined by the internal keyboard jumper preset to match the
language on the keyboard. For example, with an English language or Katakana keyboard, the
STANDARD lexical order is the same as the ASCII lexical order.

The default lexical order is STANDARD. This is also true after a SCRATCH A. The most recent
LEXICAL ORDER IS statement overrides any previous definition and affects all contexts.

Lexical order allows languages to be properly collated. This includes such treatments as ignoring
characters, dealing with accents, and character replacements. See BASIC Programming Techni-
ques manual for the details of pre-defined and user-defined lexical order tables.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This function returns the logarithm (base 10) of its argument.

RO ET=A N0

211

LGT

.. Range
Item | Description/Default Restrictions
argument I numeric expression greater than 0

Example Statements

Decibel=20%LGT(Volts)
PRINT "Log of"sXi"="3LGT(X

212

LINE TYPE

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement selects a line type and repeat length for lines, labels, frames, axes and grids.

. t -
(e TvPe = 0225 - >
repeat
O

. Range Recommended
Item Description/Default Restrictions Range
type selector numeric expression, rounded to an integer; 1 thru 10 —
Default = 1
repeat length numeric expression, rounded to an integer; —32 768 thru greater
Default = 5 +32 767 than O

Example Statements

LINE TYPE 1
LINE TYPE Select 20

Semantics

Atpower-up the default line type is a solid line (type 1), and the default repeat length is 5 GDUs.

The repeat length establishes the number of GDUs required to contain an arbitrary seqment of
the line pattern. When the plotter is the internal CRT. the repeat length is evaluated and taken as

the next lower multiple of 5. with a minimum value of 5.

When the plotter is an external plotter, the line produced by the line identifier is device
dependent. Refer to your plotter's documentation for further information.

LINE TYPE 213

The available CRT line types are shown here.

1 | LINE TYPE 18 |
S —
L | LIME TYPE 9 :
Tt/ T/
e ei—. LIME TYPE B e
= -
L. LIME TYPE 7 ———
- 1
L .. LINE T¥PE & ;
|
- LINE T¥PE &
s LIME TYEE 4 coocceeeeeeeomeeaieea

LIME TY¥PE 3

LIME THFE

—‘-— LIMNE TYFE 1

r

214

LINPUT

Option Required None

Keyboard Executable
Programmable
In an IF... THEN...

This statement accepts alphanumeric input from the keyboard for assignment to a string variable.

The LINPUT statement allows commas or quotation marks to be included in the value of the

string, and leading or trailing blanks are not deleted.

(LINPUT)}

= D~0

string
™ name k$>

Item

. e |
|

beginning
position

subscript

ending
! position
. substring
) length

Description/Default

Range
Restrictions

prompt

string name

subscript

beginning position

ending position

substring length

a literal composed of characters from the
keyboard, including those generated using
the ANY CHAR key;

Default = question mark

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

any valid name

—32 767 thru +32 767
(see ‘‘array’’ in Glossary)

1 thru 32 767
(see “‘substring’’ in Glossary)

0 thru 32 767
(see ‘“‘substring’’ in Glossary)

0 thru 32 767
(see *‘substring’” in Glossary)

LINPUT 215

Example Statements

LINPUT "Next Command?"sResronse%
LINPUT Arrav$(I)L3]

Semantics

A prompt, which remains until the LINPUT item is satisfied, appears on the CRT display line. If
the last DISP statement suppressed its CR/LF, the prompt is appended onto the current display
line contents. If the last DISP did not suppress the CR/LF, the prompt replaces the current display
line contents. Not specifying a prompt results in the question mark being used as the prompt.
Specifying the null string (" ") for the prompt suppresses the question mark.

(conTINVE), (ENTER), (EXECUTE), (_RETURN), or must be pressed to indicate that the entry is
complete. If no value is provided from the keyboard, the null string is used. If (CONTINUE), (ENTER),
(CEXECUTE), or (_RETURN)is pressed to end the data input. program execution continues at the next
program line. If is pressed, the program execution continues at the next program line in
single step mode. (If the LINPUT was stepped into. it is stepped out of, even if (CONTINUE), (ENTER),

EXECUTE), or (_RETURN Jis pressed.)

Live keyboard operations are not allowed while a LINPUT is waiting for data entry. (or
on an HP 46020A keyboard) can be pressed so live keyboard operations can be performed.
The LINPUT statement is re-executed from the beginning when ((CONTINUE) or (_STEP) is pressed.

ON KBD, ON KEY and ON KNOB events are deactivated during an LINPUT statement. Errors
do not cause an ON ERROR branch. If an input response results in an error, the LINPUT
statement is re-executed.

216

LIST

Option Required
Keyboard Executable
Programmable

Inan IF.. THEN...

This statement allows you to list the program or the key definitions currently in memory.

(L1sT

device
selector

device
selector

BIN

beginning
line number

beginning
line label

ending
line number

ending
line label

\—

Item

device
selector

Description/Default

Range
Restrictions

device selector

beginning line number
beginning line label
ending line number

ending line label

Default is PRINTER IS device.
integer constant identifying program line
name of a program line

integer constant identifying program line

name of a program line

Example Statements

LIET
LIET #701
LIET 100sLabell

LIET KEY

numeric expression; is rounded to an integer.

(see Glossary)

1 thru 32 766
any valid name
1 thru 32 766

any valid name

LIST 217

Semantics

LIST

When a label is used as a line identifier, the lowest-numbered line in memory having that label is
used. When a number is used as a line identifier, the lowest-numbered line in memory having a
number equal to or greater than the specified line is used. An error occurs if the ending line
identifier occurs before the beginning line identifier or if a specified line label does not exist in the
program. ,
Executing a LIST from the keyboard while a program is running causes the program to pause at
the end of the current line. The listing is sent to the selected device, and program execution
resumes.

After the listing is finished, the amount of available memory, in bytes, is displayed on the CRT.

LIST KEY (Requires KBD)
The LIST KEY statement lists the current typing-aid key definitions (not the labels of ON KEY

definitions) to the specified device. If a key does not currently have a definition, it will not be
listed.

LIST BIN

The LIST BIN statement lists the BINs currently loaded in memory. The name, version and brief
description of the BIN is listed. For example:

NAME VERSION DESCRIPTION

GRAPH 4.0 Graphics
MAT 4.0 Matrix Statements

LISTEN

See the SEND statement.

218

LOAD

Option Required None
i Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This statement allows you to load programs, BIN files or typing-aid key definitions into the
computer. (If using LOAD with SRM, also refer to the “SRM” section of this manual.)

(LOAD) Spefciiltexer‘ =||
BIN [| spefcillft‘)l er }
KEY J
KBD
literal form of file specifier:
—({0 (" —
O~
Item Description/Default Range
Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
prctect code literal: first two non-blank characters are signifi- * >"" not allowed
cant
msis literal (see MASS
STORAGE IS)
run line number integer constant identifying program line 1 thru 32 765
run line label name of a program line any valid name

Example Statements

LOAD Filename3&Msus$

LOAD "UTIL" +1Z20

LOAD BIN "MAT"

LOAD KEY "KEYS:INTERNAL +4.1"

LOAD 219

Semantics

LOAD

The BASIC program and all variables not in COM are lost when a LOAD is executed. Every COM
block in the newly-loaded program is compared with the COM blocks of the program in memory.
If a COM area of the newly-loaded program does not match an existent COM area, the values in
the old COM area are lost. Thus, some COM areas may be retained while others are lost. If a
PROG file contains a binary program that is compatible with BASIC 4.0, the binary is skipped and
the program is loaded.

LOAD is allowed from the keyboard if a program is not running. If no run line is specified,
must be pressed to initiate program execution, and execution will begin on the first line in the
program. If a run line is specified, prerun initialization (see RUN) is performed, and program
execution begins at the line specified. The line on which execution begins must exist in the main
program context of the newly-loaded program. If you specify a line number and it doesn’t exist,
execution begins with the next higher-numbered line, provided that line is in the main program
context.

Executing LOAD from a program causes the new program file to be loaded, prerun, and program
execution to resume. Execution begins at the line specified, or the lowest-numbered program line
if a run line is not specified.

BASIC automatically loads and runs a file called AUTOST if the file exists on the same mass
storage device as the system. If the system is loaded from SRM, the autostart file is /'SYSTEMS/
AUTOSTnn, where nn is the node number. If this file does not exist on the SRM, BASIC looks at
the root directory for a file called AUTOST.

LOAD BIN
LOAD BIN is used to load system BIN files such as MAT. Executing a LOAD BIN does not affect
the currently loaded BASIC program or any variables.

A BIN file contains either language extensions (such as MAT or GRAPH) or drivers (such as
DISC). A BIN file may contain more than one of the extensions or drivers; if so, when loaded,
only the entensions or drivers not already present in memory are loaded.

BIN files can be loaded from an external device (or SRM) even though the BIN to access that
device is absent.

LOAD KEY (Requires KBD)

LOAD KEY sets the typing-aid definitions of the softkeys according to the contents of the
specified BDAT file. If the file is not in the proper format, an error occurs. The file containing the
key definitions may be created by a user program. See the STORE KEY statement for file format.

All existing key definitions are cleared before the file’s key definitions are loaded.

If LOAD KEY is executed without a file specifier, the keys are reset to their power-on values.

ON KEY definitions are not affected by LOAD KEY.

220

LOADSUB

Option Required None
Keyboard Executable Yes
Programmable Yes (See Semantics)
Inan IF.. THEN... Yes (See Semantics)

This statement allows you to load subprograms from a PROG file into the computer. (If using
LOADSUB with SRM, also refer to the ““SRM’’ section of this manual.)

fil
LOADSUB ALL —(FRoM o e

PDEV

subprogram
name o
function
name

literal form of file specifier

file [
name
protect
code msus

Item Description/Default Re?t?;::%ie()ns
subprogram name name of a SUB or CSUB subprogram any valid name
function name name of a user-defined function any valid name
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal: first two non-blank characters are signifi- “>"" not allowed

cant
msus literal {see MASS
STORAGE IS)

LOADSUB 221

Example Statements

LOADSUB FROM "APSUBS" (Not Programmable)
LOADSUB FNRerlace$ FROM "SUBFILE™ (Programmable)
LOADSUB ALL FROM Subfile$ (Programmable)
Semantics

LOADSUB FROM (Requires PDEV)

The command LOADSUB FROM (without a subprogram name) is not programmable; it is used
before a program is run. It looks through the program and notices all the subprogram references
which are unsatisfied. Unsatisfied references are statements which reference subprograms that
don’t yet exist in memory. It then accesses the specified file (which must be a PROG file), and
loads all the needed subprograms, appending them to the end of the current program, renumber-
ing as necessary. It also looks through the subprograms it just loaded to see if they call anything
which is not yet in memory. If so, those references will be satisfied. This process repeats for each
set of subprograms loaded until all the routines that are referenced are loaded or until it is
determined they are not on the specified file. At the end of the LOADSUB FROM command, if
there are still unsatisfied references, an error message and a list of the subprograms names still
needed is displayed.

LOADSUB ALL FROM

LOADSUB <subprogram name> FROM

LOADSUB, when a subprogram name or ALL is included, loads the specified subprogram(s)
from the specified file. This form is programmable. If either the file name or the subprogram
name specified is not found, or the file name is not a PROG file, an error will occur. As the
subprogram is loaded, it will be renumbered to fit at the end of the program. LOADSUB does not
cause the program or any data currently in memory to be lost.

222

LOCAL

This statement returns all specified devices to their local state.

1/0 path
name

selector

Item

Description/Default

Option Required 10
Keyboard Executable Yes
Programmable Yes

In an IF... THEN...

Yes

Range

Restrictions

[/O path name

device selector

name assigned to a device or devices

numeric expression, rounded to an integer

Example Statements

LOCAL 8Dum
LoOcCAL 7

Semantics

any valid name
(see ASSIGN)

(see Glossary)

If only an interface select code is specified by the 1/0 path name or device selector, all devices
on the bus are returned to their local state by setting REN false. Any existing LOCAL LOCK-

OUT is cancelled.

If a primary address is included, the GTL message (Go To Local) is sent to all listeners. LOCAL
LOCKOUT is not cancelled.

Summary of Bus Actions

System Controller Not System Controtler
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN MTA ATN MTA
Controll ATN UNL GTL UNL
ontroller LAG LAG
GTL GTL
Not Active REN Error Error
Controller

LOCAL LOCKOUT

Option Required 10
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This HP-IB statement sends the LLO (local lockout) message, preventing an operator from
returning the specified device to local (front panel) control.

interface
select code

I/0 path
name

(LOCAL LOCKOUT

. Range
Item Description/Default Restrictions
I/O path name name assigned to an interface select code any valid name
(see ASSIGN)
interface select code | numeric expression, rounded to an integer 7 thru 31

Example Statements

LOCAL LOCKOUT 7
LOCAL LOCKOUT @EHpib

Semantics
The computer must be the active controller to execute LOCAL LOCKOUT.

If a device is in the LOCAL state when this message is sent, it does not take effect on that device
until the device receives a REMOTE message and becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal bus command

received by all devices on the interface whether addressed or not. The command sequence is
ATN and LLO.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN Error ATN E
Controller LLO o LLO rror
Not Active E
Controller rror

223

224

LOG

Option Required
Keyboard Executable
Programmable

Inan [F... THEN...

This function returns the natural logarithm (base e) of the argument.

CH ORI

None
Yes
Yes
Yes

. Range
Item | Description/Default I Restrictions
argument I numeric expression | greater than O

Example Statements

Time=-1%¥Rc*¥L0G(Volts/Emf)
PRINT "Natural log of"sYi"="3L0OG(Y)

LOCATOR

See the READ LOCATOR and SET LOCATOR statements.

LOOP

Option Required None
Keyboard Executable No
Programmable Yes
Inan IF... THEN... No

This construct defines a loop which is repeated until the boolean expression in an EXIT IF
statement evaluates to be logically true (evaluates to a non-zero value).

LooP

program
segment

(EXIT IFH exbporoelsesainon H

program
segment

ik

END LOOP
Item Description/Default Range
Restrictions
boolean numeric expression; evaluated as true if non- —
expression zero and false if 0
program segment any number of contiguous program lines not —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

Example Program Segments

460 LLOOP

470 HIT IF LEN(A$)<Z

480 P=POS(A%$:Delim$)

490 EXIT IF NOT P

500 A$=A%[1,,P-1]18A%$LP+2]

310 END LOOP

1200 LOOP ! Until an EOF branch
1210 ENTER BFileiText$
1220 PRINT Text$

1230 END LOOP

225

226 LOOP

Semantics

The LOOP...END LOOP construct allows continuous looping with conditional exits which
depend on the outcome of relational tests placed within the program segments. The program
segments to be repeated start with the LOOP statement and end with END LOOP. Reaching
the END LOOP statement will result in a branch to the first program line after the LOOP
statement.

Any number of EXIT IF statements may be placed within the construct to escape from the loop.
The only restriction upon the placement of the EXIT IF statements is that they must not be part
of any other construct which is nested within the LOOP...END LOOP construct.

If the specified conditional test is true, a branch to the first program line following the END
LOOP statement is performed. If the test is false, execution continues with the next program
line within the construct.

Branching into a LOOP...END LOOP construct (via a GOTO) results in normal execution from
the point of entry. Any EXIT IF statement encountered will be executed. If execution reaches
END LOOP, a branch is made back to the LOOP statement, and execution continues as if the
construct had been entered normally.

Nesting Constructs Properly

LOOP...END LOOP may be placed within other constructs, provided it begins and ends before
the outer construct can end.

GRAPH LORG

Option Required

Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This statement specifies the relative origin of a label or symbol with respect to the current pen
position.

ED e

. Range
Item | Description/Default | Restrictions
label origin position | numeric expression, rounded to an integer; 1 thru9

Default = 1

Example Statements

LORG 4
IF Y*Limit THEN LORG 3

Semantics

The following drawings show the relationship between a label and the logical pen position. The

pen position before the label is drawn is represented by a cross marked with the appropriate
LORG number.

3 6 S

B 1 -

EVE N

1 4

| I d

Label Origins for Labels with an Even Number of Characters

227

228 LORG

+ + o+
| + | [+

+ 4+

Label Origins for Labels with an Odd Number of Characters

LWCS$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function replaces any uppercase characters with their corresponding lowercase characters.

string
Lwos)0 O

Example Statements

Lower$=LWC$("UPPER")
IF LWC$(Yess)="y" THEN True_test

Semantics

The LWC$ function converts only uppercase alphabetic characters to their corresponding
lowercase characters and will not alter numerals or special characters.

The corresponding characters for the Roman Extension alphabetic characters are determined by
the current lexical order. When the lexical order is a user-defined table, the correspondence is
determined by the STANDARD lexical order.

229

230

MASS STORAGE IS

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN. . Yes

This statement specifies the system mass storage device. (If using MASS STORAGE IS with SRM,

also refer to the “SRM”’ section of this manual.)

media
specifier

MASS STORAGE IS

literal form of mecdia specifier

msus:

—>(INTERNAL)
4

unit _J
number

MEMORY [
0

Item

unit)
number

o device
'’ selector
device unit
type number l

Description/Default

volume
number

Range
Restrictions

media specifier
msus

device selector
device type

unit number

volume number

string expression
literal

integer constant
literal

integer constant;
Default = 0

integer constant;
Default = 0

(see drawing)
(see Glossary)

(see Seratics)

0 thru 255
(device dependent)

{device dependent)

MASS STORAGE IS

Example Statements

MASS STORAGE IS ":INTERNAL 41"
MASS STORAGE IS ":X.,12"
MASS STORAGE IS Msus$

Sematics

All mass storage operations which do not specify a source or destination by either an I/0O path
name or msus in the file specifier use the current system mass storage device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line, but a program
listing always shows the unabbreviated keywords.

Device Type
The following table shows the valid device types. Most device types require an option BIN for the
statement to execute.

BIN Required Device Type
none INTERNAL
MEMORY
DISC & HP 9895
HPIB or FHPIB | HP 9121
HP 9133
HP 9134
HP 9135 (5V4 inch uses HPIB not FHPIB)
HP 913X
DISC & HPIB HP 82901
HP 82902
HP 8290X
CS80 & CS80 (7908, 7911, 7912, 7914, 9122...)
HPIB or FHPIB
HP9885 & GPIO | HP 9885
SRM & DCOMM | REMOTE
BUBBLE BUBBLE
EPROM EPROM
Note the 98625 Card (which requires the FHPIB BIN) cannot be used with external
5%4 inch discs.

If the device type specified is not valid, the system tests the device to determine its type. There are
two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is assummed to be
MEMORY

2. 1If the device type is valid and the driver BIN for the device is not loaded, the system
considers the device an invalid device type.

If a valid device type is specified and the system finds a different device at the device selector,
error 72 occurs.

231

232 MASS STORAGE IS

Non-Disc Mass Storage
Memory volumes are created by the INITIALIZE statement. They are removed by SCRATCH A
or by turning off the power. The unit number for a MEMORY volume may be 0 thru 31.

A bubble memory card may have an select code of 8 thru 31. (Use of this card requires the
BUBBLE BIN.) A bubble memory card is always unit number 0. It is recommended that these
cards be given a high hardware-interrupt level to avoid error 314 in overlapped applications.

When writing data into EPROM (requires the EPROM BIN), specify the select code of the
EPROM Programmer card that is connected to the desired EPROM memory card. When reading
data from EPROM, specify a select code of O or use the select code of the currently-connected
EPROM Programmer card. If the programmer card at the specified select code is not connected to
the specified EPROM memory card, an error is reported. If the select code of 0 is used, you must
specify “EPROM" in the mass storage unit specifier; otherwise, the system assumes MEMORY.

The unit numbers are given to the EPROM memory cards at power-up according to relative
memory addresses. The card with the lowest address is given unit number 0, the card with the next
greater address is given unit number 1, and so forth.

Option Required
Keyboard Executable
Programmable

In an IF... THEN...

MAT
Yes
Yes
Yes

MAT

MAT can be used to initialize string and numeric arrays to constant values and copy string and
numeric arrays. It can also be used to perform arithmetic operations on numeric arrays and,
through the use of secondary keywords, can be used to perform special functions on numeric

arrays.

CMAT)__.‘?tri:gm:rr‘ay e

array
name

array
name {
operator

string array

name

string
expressian

array
name

vector
name

matrix
name

Item

> (

numeric
expression

array
operator H:ail-—.

Description/Default

Range
Restrictions

string array name
array name

operator

vector name

matrix name

name of a string array
name of a numeric array

Any of the following:

+ - /4 d= o= 4 2= F ok
name of a one-dimensional numeric array

name of a two dimensional numeric array

any valid name
any valid name

+ can only appear
between two arrays

any valid name

any valid name

233

234 MAT

Example Statements

MAT A= A*(Ref+1/3)
MAT A= A+B

MAT A= B< (1)

MAT A= B« :C

MAT U= CSUM(A)

MAT I= IDN

MAT B= INU(A)

Semantics
The MAT statement allows you to:

e Copy a string expression into a string array or copy the contents of one string array into
another string array.

e Copy a numeric expression into an array or the contents of one array into another array.
® Add an array and a numeric expression, or two arrays.

® Subtract a numeric expression from an array, an array from a numeric expression, or an
array from an array.

® Multiply an array by a numeric expression or another array.

® Divide a numeric expression by an array, an array by a numeric expression. or an array by an
array.

e Compare an array to a numeric expression or to another array.

¢ Calculate the Identity, Inverse, Transpose, Sum of rows and Sum of columns of a matrix.

Note

If an error occurs during the calculations involved in a MAT assign-
ment the result array will contain only a partial result. Since you will
have no idea which entries are valid, the contents of the array should
be considered invalid.

Numeric Operations

In the case of operators, the specified operation is generally performed on every array element,
and the results are placed in corresponding locations of the result array (the exception is the *
operator, which is discussed under Matrix Multiplication, below.) This means that the result array
must have the same size and shape (though not necessarily the same subscript ranges) as the
operand array(s). If necessary, the system will redimension the result array to make it the proper
size. The redimensioning can only take place, however, if the dimensioned size of the result array
has at least as many elements as the current size of the operand array(s).

When two arrays are operated on, they must be exactly the same size and shape. If not, the
computer returns an error. The specified operation is performed on corresponding elements in
each operand array and the result is placed in the corresponding location of the result array.
Multiplication of the elements of two arrays is performed with a period rather than an asterisk.
The asterisk is reserved for matrix multiplication described below.

MAT

Relational Operators

Relational operations are performed on each element of the operand array(s). If the relation is
TRUE, a 1is placed in the corresponding location of the result array. If the relation is FALSE, a O is
recorded. The result array, therefore, consists of all 0’s and 1’s.

Matrix Multiplication

The asterisk is used for two operations. If it is between an array and a numeric expression, each
element in the array is multiplied by the numeric expression. If it is between two matrixes, it
results in matrix multiplication. If A and B are the two operand matrices, and Cis the result matrix,
the matrix multiplication is defined by:

n
Cij =2 AikBkj
k=1

where n is the number of elements in a column in the matrix A. (This formula assumes that the
array subscripts run from 1 through N; in actuality, the computer only requires that the two arrays
be the correct size and shape, the actual values of the subscripts are unimportant.)

Note that the subscript values of the result array correspond to the rows of the first operand matrix
and the columns of the second operand matrix. Note also that the column subscript of the first
operand array is equal to the row subscript of the second operand array. We can summarize these
observations in two general rules:

® The result matrix will have the same number of rows as the first operand matrix and the same
number of columns as the second operand matrix.

® Matrix multiplication is legal if, and only if, the column size of the first operand matrix is equal
to the row size of the second operand matrix.

A third rule of matrix multiplication is:

® The result matrix cannot be the same as either operand matrix.

The calculation is done in REAL math unless both operands are INTEGER, in which case the
computation is also INTEGER. If the result matrix and the operand matrixes are different types
(i.e., one is REAL and the others are INTEGER), the computer makes the conversion necessary
for the assignment. However, the conversion is made after the multiplication is calculated, so
even if the matrix receiving the result is REAL, the multiplication can generate an INTEGER
overflow when the operands are INTEGER matrixes.

The computer allows you to do matrix multiplication on vectors by treating the vectors as if they
were matrices. If the first operand is a vector, it is treated as a 1-by-N matrix. If the second
operand is a vector, it is treated as an N-by-1 matrix

235

236 MAT

CSUM

This secondary keyword computes the sum of each column in a matrix and places the results in a
vector. The result vector must have at least as many elements as the matrix has columns. If the
vector is too large or its current size is too small (and there are enough elements in its original
declaration to allow redimensioning), the computer redimensions it. If the result vector and the
argument array are different types (i.e., one is REAL and the other is INTEGER), the computer
makes the necessary conversion. However, the conversion is made after the column sums are
calculated, so even if the vector receiving the result is REAL, CSUM can generate an INTEGER
overflow when the argument is an INTEGER array.

IDN
This secondary keyword turns a square matrix into an identity matrix. An identity matrix has 1’s
along the main diagonal and O’'s everywhere else. The matrix must be square.

INV

This secondary keyword finds the inverse of a square matrix. A matrix multiplied by its inverse
produces an identity matrix. The inverse is found by using the pivot-point method. If the value of
the determinant (see DET) is O after an INV, then the matrix has no inverse — whatever inverse
the computer came up with is invalid. If the value of the determinant is very small compared with
the elements in the argument matrix, then the inverse may be invalid and should be checked.

If the result matrix is not the same size and shape as the argument matrix, the computer will
attempt to redimension it. If it is too large, or its current size is too small (and there are enough
elements in its original declaration to allow redimensioning) the computer redimensions it. An
error is returned if the computer cannot redimension the result array.

RSUM

This secondary keyword computes the sum of each row in a matrix and places the values in a
vector. The result vector must be large enough to hold the sums of each row. Ifitis too large, orits
current size is too small (and there are enough elements in its original declaration to allow
redimensioning) the computer redimensions it. If the result vector and the argument array are
different types (i.e., one is REAL and the other is INTEGER), the computer makes the necessary
conversion. However, the conversion is made after the row sums are calculated, so even if the
vector receiving the result is REAL, RSUM can generate an INTEGER overflow when the
argument is an INTEGER array.

TRN

This secondary keyword produces the transpose of a matrix. The transpose is produced by
exchanging rows for columns and columns for rows. The result matrix must be dimensioned to be
at least as large as the current size of the argument matrix. If it's the wrong shape, the computer
redimensions it. The result and argument matrices cannot be the same.

The transpose of an N-by-M matrix is an M-by-N matrix, and each element is defined by switching
the subscripts. That is, A(m,n) in the argument matrix equals B(n,m) in the result matrix. (This
description assumes that the array subscripts run from 1 through M and 1 through N; in actuality,
the computer only requires that the array be the correct size and shape, the actual values of the
subscripts are unimportant.)

MAT REORDER

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement reorders elements in an array according to the subscript list in a vector.

(MAT REQRDER)—{ 3>] (BY ="Sine” >
) O

Item Description/Default Reg?i'li;ii)ns
array name name of an array any valid name
vector name name of a one-dimensional numeric array any valid name
dimension numeric expression, rounded to an integer; 1 thru 6;
Default=1 < the RANK of the array

Example Statements

MAT REORDER A BY B
MAT REORDER A BY B2

Semantics

The dimension parameter is used to specify which dimension in a multidimensional array is to be
reordered. If no dimension is specified, the computer defaults to dimension 1. The vector must be
the same size as the specified dimension and it should contain integers corresponding to the
subscript range of that dimension (no duplicate numbers, or numbers out of range).

Vectors generated by a MAT SORT TO statement are of the proper form for reordering (see MAT
SORT).

237

238

MAT SORT

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement sorts an array along one dimension according to lexical or numeric order. In a
string array, the current LEXICAL ORDER IS table is used for the sorting comparisons.

numeric key
specifier

MAT SORT

numeric
array name

string
array name

nureric key specitier:

HII

you must include one
and only one, asterisk

string key specifier:

you must include one
and only one, asterisk

beginning
positiaon

ending
position

substring

MAT SORT 239

. Range
Item Description/Default Restrictions
numeric array name name of a numeric array any valid name
string array name name of a string array any valid name
vector name name of a one-dimensional numeric array any valid name
subscript numeric expression, rounded to an integer —32 768 thru +32 767
(see ‘‘array” in glossary)
beginning position numeric expression, rounded to an integer 1 thru 32 767 (see
“substring” in Glossary)
ending position numeric expression, rounded to an integer 0 thru 32 767 (see
“substring’’ in Glossary)
substring length numeric expression, rounded to an integer 0 thru 32 767 (see
“substring” in Glossary)

Example Statements

MAT SORT A(1%,3)

MAT SORT A(1,%,3) +(2+%,5) DES
MAT SORT B(%) TO U

MAT SORT A$(3,,%)[1321 TO ¥

MAT SORT A$(*,2) DES»(%*,3)[4:71]

Semantics

The elements to be compared are defined by a key specifier. The dimension to be sorted is
marked with an asterisk, and the subscript values in the key specifier define which elements in
that dimension should be used as the sorting values. Once (#) or (#) DES appears in the list
following the array name, no other items can be added.

In the case of ties, the computer leaves the elements in their current order. However, you can
define additional key specifiers to be used for ties. Whenever the computer encounters a tie, it will
look to the next (moving from left to right) key specifier to break the tie. It will look at as many key
specifiers as necessary to resolve the tie. In theory, there is no limit to the number of key specifiers
you can have in one MAT SORT statement. In practice, it is limited by the length of a stored line
on the computer you are dealing with. Each key must have an asterisk marking the same
dimension.

Normally, the system sorts in ascending order. You can sort in descending order by using the
secondary keyword DES. DES applies only to the key specifier which it follows. All others use the
default ascending order.

240 MAT SORT

MAT SORT of string arrays allows you not only to define the elements to be sorted, but also to
define substrings within each element. Substring specifiers refer only to the key specifier that
immediately precedes them. Substrings may lie anywhere within the dimensioned size of the
string. If a substring lies outside the current string length, the null string is used as the sorting key.

In addition to actually sorting an array, you can use MAT SORT...TO to store the new order in a
vector and leave the original array intact. If the vector is too large, or its current size is too small
(and there are enough elements in its original declaration to allow redimensioning) the computer
redimensions it. After a MAT SORT TO statement, the array will be unchanged. The vector will
contain the subscript values of the sorted dimension in their new order. You can then order the
array or other parallel arrays using the REORDER statement. You can also use the contents of the
vector to access the original array indirectly.

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

MAX

This function returns a value equal to the largest value in the list of arguments provided. If an
array is specified as part of the list of arguments, it is equivalent to listing all the values in the array.
An INTEGER is returned if and only if all arguments in the list are INTEGER.

numeric
expression
array
name

Item | Description/Default

Range
Restrictions

array name | name of a numeric array

Example Statements

HX=MAX(A(*))

X=MAX(A3+B)
K=MAX(FloorsMIN(Ceiling»Ardument))

any valid name

Note

It is possible for the space needed for MAX to exceed the temporary
storage allocated for expression evaluation. If the machine is close to
overflowing memory this can be a fatal error and can crash the machine.
It is recommended that statements including MAX not contain more than

20 variables and constants. An array is counted as one variable.

241

242

MAXREAL
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This function returns the largest positive REAL number available in the range of the machine.

Example Statements

A=MAXREAL
IF A*B<MAXREAL THEN GOTD 100

Semantics
The value of MAXREAL is approximately 1.797 693 134 862 32 E + 308.

Option Required MAT
Keyboard Executable Yes
Programmabile Yes
In an IF... THEN... Yes

MIN

This function returns a value equal to the smallest value in the list of arguments provided. If an
array is specified as part of the list of arguments, it is equivalent to listing all the values in the array.
An INTEGER is returned if and only if all arguments in the list are INTEGER.

()=
o/

numeric
expression
array
name

. Range
Item | Description/Default Restrictions
array name | name of a numeric array any valid name

Example Statements

R=MINC(A(*®))
R=MIN(A:+3:+B)
K=MIN(Ceilindg sMAX(FloorsArdument))

Note

It is possible for the space needed for MIN to exceed the temporary
storage allocated for expression evaluation. If the machine is close to
overflowing memory this can be a fatal error and can crash the machine.
It is recommended that statements including MIN not contain more than

20 variables and constants. An array is counted as one variable.

243

244

MINREAL

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN. . Yes

This function returns the smallest positive REAL number available in the range of the computer.

Example Statements

A=MINREAL
IF A-B:>MINREAL THEN GOTO 100

Semantics

The value of MINREAL is approximately 2.225 073 858 507 2 4E - 308

MLA

See the SEND statement.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This operator returns the remainder of a division.

——{ dividend HMOD H divisor }———

MOD

s Range
Item | Description/Default Restrictions
dividend numeric expression —
divisor numeric expression not equal to 0

Example Statements

Remainder=Dividend MOD Divisor
PRINT "Seconds ="3iTime MOD GO

Semantics

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise the returned

value is REAL.

For INTEGERs, MOD is equivalent to X — Y x (X DIV Y).This may return a different result
from the modulus function on other computers when negative numbers are involved.

245

246

MODULO

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This operator returns the integer remainder resulting from a division.

——l dividend I—PCMODULO)——[modulus I——-b

. Range
Item | Description/Default | Restrictions
dividend numeric expression range of REAL
modulus numeric expression range of REAL, #0

Example Statements

Remainder=Dividend MODULO Modulus
A=B MODULDO C

Semantics
X MODULOY is equivalent to X =Y x INT(X/Y).

The result satisfies:

0 <= (XMODULOY) <YifY>0
Y < (XMODULOY) <= 0if Y<O0

The type of the result is the higher of the types of the two operands. If the modulus is zero error 31
occurs.

MODULO returns the remainder of a division.

MOVE

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement moves both the logical and physical pens from the current pen position to the
specified X and Y coordinates.

Range
Item Description/Default e
ption/ Restrictions
x coordinate numeric expression in current units —
y coordinate numeric expression in current units —

Example Statements
MOVE 10,75
MOVE Next_xsNext_v

Semantics

The X and Y coordinates are interpreted according to the current unit-of-measure. MOVE is
affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip limits, no
physical pen movement is made; however, the logical pen position is moved to the specified

coordinates.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2. The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

247

248

MOVELINES

Option Required PDEV
Keyboard Executable Yes
Programmable No
In an IF... THEN No

This command allows you to move one or more program lines to another place while editing a

program.

ending

(MOVELINES }

beginning
line number
beginning
line label

-
" |Lline number

T0

ending
line label

target
line number

line label

Item Description/Default Re?t?irgt;i(:)ns
beginning line number integer constant identifying program line 1to0 32 766
beginning line label name of a program line any valid name
ending line number integer constant identifying program line 1to 32 766

ending line label
target line number

target line label

name of a program line
integer constant identifying program line

name of a program line

Example Statements
MOVELINES 1200 TO 2350

MOVELINES 100,230

TO Labell

MOVELINES Util_start,Util_end TO 16340

any valid name
1to 32 766

any valid name

MOVELINES 249

Semantics
If the ending line identifier is not specified, only one line is moved.

The target line identifier will be the line number of the first line of the moved program segment.
Moved lines are renumbered if necessary. The code (if any) which is ““‘pushed down’’ to make
room for the moved code is renumbered if necessary.

Line number references to the moved code are updated as they would be by a REN command
(except external references to non-existent lines are renumbered).

If there are any DEF FN or SUB statements in the moved code, the target line number must be
greater than any existing line number.

If you try to move a program segment to a line number contained in the segment, an error will
result and no moving will occur.

If the starting line number does not exist, the next line is used. If the ending line number does not
exist, the previous line is used. If a line label doesn’t exist, an error occurs and no moving takes
place.

If an error occurs during a MOVELINES (for example, a memory overflow), the move is
terminated and the program is left partially modified.

MSI

See the MASS STORAGE IS statement.

MTA

See the SEND statement.

NEXT

See the FOR...NEXT construct.

250

NOT

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This operator returns 1 if its argument equals 0. Otherwise, O is returned.

’(NOT Hﬂnbur"zesrsiicﬂ n —l’

Example Statements

Invert_flag=NOT Std_device
IF NOT Pointer THEN Next_or

Semantics

When evaluating the argument, a non-zero value (positive or negative) is treated as a logical 1;

only zero is treated as a logical 0.

The logical complement is shown below:

A | NOTA

0 1
1 0

251

NPAR

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns the number of parameters passed to the current subprogram. If execution
is currently in the main program, NPAR returns 0.

Example Statements

IF NPAR>3 THEN Extra
Factors=NPAR-2

252

NUM

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the decimal value of the ASCII code of the first character in the argument.

The range of returned values is O thru 255.

G~z (D

. Range
Item | Description/Default | Restrictions
argument | string expression | not a null string

Example Statements

Letter=NUM(Strindgs)
AFLIF1I=CHRE(NUM(ASLI])+32)

OFF CYCLE

Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
CYCLE statement.

OFF CYCLE

Example Statements

OFF CYCLE
IF Kick.stand THEN QOFF CYCLE

Semantics

OFF CYCLE destroys the log of any CYCLE event which has already occurred but which has not
been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON CYCLE in the calling
context, the ON CYCLE definition is restored upon returning to the calling context.

253

254

OFF DELAY

Option Required CLOCK
Keyboard Executable No
Programmable Yes
Inan IF...THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
DELAY statement.

OFF DELAY

Example Statements

OFF DELAY
IF Ready THEN OFF DELAY

Semantics

OFF DELAY destroys the log of any DELAY event which has already occurred but which has not
been serviced.

If OFF DELAY is executed in a subprogram such that it cancels an ON DELAY in the calling
context, the ON DELAY definition is restored upon returning to the calling context.

OFF END

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously enabled and defined by an ON END
statement.

G 2 O el

e Range
Item I Description/Default | Restrictions
I/O path name | name assigned to a mass storage file I any valid name (see ASSIGN)

Example Statements

OFF END @BFile
IF Special THEN OFF END BSource

Semantics

If OFF END is executed in a subprogram and cancels an ON END in the context which called
the subprogram, the ON END definitions are restored when the calling context is restored.

Ifthere is no ON END definition in a context, end-of-file and end-of-record are reported as errors.

255

256

OFF EOR

Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON EOR
statement.

(orr eon)—~(e) "ate"

Range

Item I Description/Default | Restrictions

/O path name name assigned to a device, a group of devices, or any valid name

a mass storage file

Example Statements

OFF EOR BFile
OFF EOR @Device.selector

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file;
however, if the 1/O path is assigned to a BUFFER, an error is reported when the OFF EOR
statement is executed.

OFF EOR destroys the log of any EOR event which has already occurred but which has not been
serviced.

If OFF EOR is executed in a subprogram such that it cancels an ON EOR in the calling context, the
ON EOR definition is restored upon returning to the calling context.

OFF EOT

Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON EOT
statement.

GED ONEHl

Range
Restrictions

Item | Description/Default

name assigned to a device, a group of devices, or any valid name

a mass storage file

/O path name

Example Statements

OFF EOT EBFile
IF Done.flag THEN OFF EOT @Info

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file;
however, if the I/O path is assigned to a BUFFER, an error is reported when the OFF EOT
statement is executed.

OFF EOT destroys the log of any EOT event which has already occurred but which has not been
serviced.

If OFF EOT is executed in a subprogram such that it cancels an ON EOT in the calling context, the
ON EOT definition is restored upon returning to the calling context.

257

258

OFF ERROR

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
ERROR statement. Further errors are reported to the user in the usual fashion.

OFF ERROR

OFF INTR

Option Required 10
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined by an ON INTR statement.

((oFF INTR) - >
interface

Range
Restrictions

Item I Description/Default

numeric expression, rounded to an integer; 5, and 7 thru 31

Default = all interfaces

interface select code

Example Statements

OFF INTR
OFF INTR Hpib

Semantics

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the OFF INTR to apply to the event-initiated log
entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further interrupts are
ignored.

259

260

OFF KBD

Option Required None
Keyboard Executable No
Programmable Yes
In an IF.. THEN... Yes

This statement cancels the event-initiated branch previously defined by an ON KBD statement.

Example Statements

OFF KBD
IF NOT Process_Kevs THEN OFF KBD

Semantics

When this statement is executed, any pending ON KBD branch is cancelled, and the keyboard
buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD in the calling context,
the cancelled ON KBD definition is restored when the calling context is restored. However, the
keyboard buffer’s contents are not restored with the calling context, because the buffer was
cleared with the OFF KBD.

OFF KEY

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON KEY
statement.

('oFF Key)- - -
selector
.. Range
Item Description/Default Restrictions
key selector numeric expression, rounded to an integer; 0 thru 19

Default = all keys

Example Statements

OFF KEY
OFF KEY 4

Semantics

Not specifying a softkey number disables the event-initiated branches for all softkeys. Specify-
ing a softkey number causes the OFF KEY to apply to the specified softkey only. If OFF KEY is
executed in a subprogram and cancels an ON KEY in the context which called the subprogram,
the ON KEY definitions are restored when the calling context is restored.

Any pending ON KEY branches for the effected softkeys are lost. Pressing an undefined softkey
generates a beep.

261

262

OFF KNOB

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by the ON
KNOB statement. Any pending ON KNOB branches are lost. Further use of the knob will result
in normal scrolling or cursor movement.

OFF SIGNAL

Option Required 10
Keyboard Executable No
Programmable Yes
In an I[F...THEN... Yes

OFF SIGNAL cancels the ON SIGNAL definition with the same signal selector. If no signal
selector is provided, all ON SIGNAL definitions are cancelled. OFF SIGNAL only applies to the
current context.

((OFF SIGNAL } >
signal
'I selector I

. Range
Item | Description/Default \ Restrictions
signal selector | numeric expression, rounded to an integer | 0 thru 15

Example Statements

OFF SIGNAL
OFF SIGNAL 15

263

264

OFF TIME

Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an [F... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON TIME
statement.

Example Statements

OFF TIME
IF Attended THEN OFF TIME

Semantics

OFF TIME destroys the log of any TIME event which has already occurred but which has not been
serviced.

If OFF TIME is executed in a subprogram such that it cancels an ON TIME in the calling context,
the ON TIME definition is restored upon returning to the calling context.

OFF TIMEOUT

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
TIMEOUT statement.

(OFF TIMEOUT } > >
select code
Item Description/Default Range
Restrictions
interface select code | numeric expression, rounded to an integer; 7 thru 31

Default = all interfaces

Example Statements

OFF TIMEOUT
OFF TIMEOUT Isc

Semantics

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the ON TIMEOUT to apply to the event-initiated
branches for the specified interface only. When OFF TIMEOUT is executed, no more timeouts
can occur on the effected interfaces.

265

266

ON

Option Required None
Keyboard Executable No
Programmabel Yes
In an IF... THEN... Yes

This statement transfers program execution to one of several destinations selected by the value

of the pointer.

pointer

GOTO

. Range
Item Description/Default Restrictions
pointer numeric expression, rounded to an integer 1 thru74
line number integer constant identifying a program line 1 thru 32 766
line label name of a program line any valid name

Example Statements
ON X1 GOTO 100,150,170

IF Point THEN ON Point GOSUB FirstsSecondsThirdslLast

Semantics

If the pointer is 1, the first line number or label is used. If the pointer is 2, the second line
identifier is used, and so on. If GOSUB is used, the RETURN is to the line following the

ON...GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or numbers, error 19 is
generated. The specified line numbers or line labels must be in the same context as the ON

statement.

267

ON CYCLE

Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement defines and enables an event-initiated branch to be taken each time the specified
number of seconds has elapsed.

@N CYCL@——l seconds } r GoTO

O

line 1label
-

D

subprogram
CaLL

. Range
Item Description/Default Restrictions
seconds numeric expression, rounded to the nearest 0.01 0.01 thru 167 772.16
second
priority numeric expression, rounded to an integer; 1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON CYCLE 1 GOSUB One.second
ON CYCLE 3600,12 CALL Chime

268 ON CYCLE

Semantics

The most recent ON CYCLE (or OFF CYCLE) definition overrides any previous ON CYCLE
definition. If the overriding ON CYCLE definition occurs in a context different from the one in
which the overridden ON CYCLE occurs, the overridden ON CYCLE is restored when the calling
context is restored, but the time value of the more recent ON CYCLE remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user-
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON CYCLE can interrupt service routines of other event-
initiated branches with user-definable priorities, if the ON CYCLE priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON CYCLE statement.
CALL and GOSUB will return to the next line that would have been executed if the CYCLE event
had not been serviced, and the system priority is restored to that which existed before the ON
CYCLE branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON CYCLE statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the cycle value is short
enough that the computer cannot service it, the interrupt will be lost.

Option Required
Keyboard Executable
Programmable

In an IF... THEN...

CLOCK

No
Yes
Yes

ON DELAY

This statement defines and enables an event-initiated branch to be taken after the specified
number of seconds has elapsed.

(on DELAY)] seconas |

O~

line label
b=

subprogram
name

. Range
Item Description/Default Restrictions
seconds numeric expression, rounded to the nearest 0.01 0.01 thru 167 772.16
second
priority numeric expression, rounded to an integer; 1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

subprogram name

Examples

name of a SUB or CSUB subprogram

ON DELAY 10 GOTO Default
ON DELAY 3,2 GOSUB Low-_level

any valid name

269

270 ON DELAY

Semantics

The most recent ON DELAY (or OFF DELAY) definition overrides any previous ON DELAY
definition. If the overriding ON DELAY definition occurs in a context different from the one in
which the overridden ON DELAY occurs, the overridden ON DELAY is restored when the calling
context is restored. but the time value of the more recent ON DELAY remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user-
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON DELAY can interrupt service routines of other event-
initiated branches with user-definable priorities, if the ON DELAY priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON DELAY statement.
CALL and GOSUB will return to the next line that would have been executed if the DELAY event
had not been serviced, and the system priority is restored to that which existed before the ON
DELAY branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON DELAY statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON DELAY is disabled by DISABLE and deactivated by OFF DELAY.

ON END

Option Required None
Keyboard Executable No
Programmable Yes
In an [F... THEN... Yes

This statement defines and enables an event-initiated branch to be taken when end-of-file is
reached on the mass storage file associated with the specified 1/O path.

I/0 th
CED nahe cot0

pe

RECOVER
b

Item Description/Default Re?tarlitgt;ieons
/O path name name assigned to a mass storage file any valid name (see
ASSIGN)
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON END @Source GOTO Next_file
ON END @Dest CALL Expand

271

272 ONEND

Semantics
The ON END branch is triggered by any of the following events:

e When the physical end-of-file is encountered.
e When an ENTER statement reads the byte at EOF or beyond.
e When a random access OUTPUT requires more than one defined record.

e When a random access OUTPUT is attempted beyond the next available record. (If EOF is
the first byte of a record, then that record is the next available record. If EOF is not at the first
byte of a record, the following record is the next available record.)

The priority associated with ON END is higher than priority 15. ON TIMEOUT and ON ERROR
have the same priority as ON END, and can interrupt an ON END service routine.

Any specified line label or line number must be in the same context as the ON END statement.
CALL and GOSUB will return to the line immediately following the one during which the
end-of-file occurred, and the system priority is restored to that which existed before the ON END
branch was taken. RECOVER forces the program to go directly to the specified line in the context
containing that ON END statement. When RECOVER forces a change of context, the system
priority is restored to that which existed in the original (defining) context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, if the I/O path
name is known in the new context. CALL and RECOVER do not remain active if the context
changes as a result of a keyboard-originated call. GOSUB and GOTO do not remain active when
the context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be trapped by ON
ERROR if ON END is not active. ON END is deactivated by OFF END. DISABLE does not affect
ON END.

ON EOR

Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF...THEN... Yes

This statement defines and enables an event-initiated branch to be taken when an end-of-record
is encountered during a TRANSFER.

1/0 path _
name e
on

line label

subpraogram
name

L. Range
Item Description/Default Restrictions
/O path name name assigned to a device, a group of devices, or any valid name
a mass storage file
priority numeric expression, rounded to an integer; 1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON EOR @Gepio GOSUB Grio_eor
ON EOR ®@Heib 9 CALL Eor_sensed

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file. If the
1/0 path is assigned to a BUFFER, an error is reported when the ON EOR statement is executed.

If a TRANSFER statement uses an 1/O path name which is local to a subprogram and the
TRANSFER has not completed by the time the context is exited, returning to the original context
will be deferred until the end of the TRANSFER; at that time the ON EOR event cannot be
serviced. To ensure that the event will be serviced, a statement that cannot be executed in
overlap with the TRANSFER must be executed before the context is exited. A WAIT FOR EOR
@Non_buf statement is used for this purpose.

273

274 ONEOR

End-of-record delimiters are defined by the EOR parameters of the TRANSFER statement (i.e.,
DELIM, COUNT, or END). An EOR event occurs when any of the specified end-of-record
delimiters is encountered during a TRANSFER. The event’s occurrence is logged, and the
specified branch is taken when system priority permits.

The most recent ON EOR (or OFF EOR) definition for a given [/O path name overrides any
previous ON EOR definition. If the overriding ON EOR definition occurs in a context different
from the one in which the overridden ON EOR occurs, the overridden ON EOR is restored when
the calling context is restored.

The priority can be specified. with the highest priority represented by 15. The highest user-
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON EOR can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON EOR priority is higher than the priority of the
service routine (the current system priority). CALL and GOSUB service routines get the priority
specified in the ON... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EOR statement.
CALL and GOSUB will return to the next line that would have been executed if the EOR event
had not been serviced, and the system priority is restored to that which existed before the ON
EOR branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOR statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON EOR is disabled by DISABLE and deactivated by OFF EOR.

Option Required

Keyboard Executable

Programmable
In an IF... THEN...

This statement defines and enables an event-initiated branch to be taken when the last byte is

TRANS
No

Yes
Yes

transferred by a TRANSFER statement.

Ol

Item

O

Description/Default

line label

line number

subpraogram
name

ON EOT

Range
Restrictions

/O path name

priority

line label
line number

subprogram name

name assigned to a device, a group of devices, or
a mass storage file

numeric expression, rounded to an integer;
Default=1

name of a program line
integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON EOT @File GOTO Finished
ON EOT @Heib 5 CALL More

any valid name

1 thru 15

any valid name
1 thru 32 766

any valid name

275

276 ON EOT

Semantics

The /O path may be assigned either to a device, a group of devices, or to a mass storage file. If the
I/O path is assigned to a BUFFER, an error is reported when the ON EOT statement is executed.

If a TRANSFER statement uses an /O path name which is local to a subprogram and the
TRANSFER has not completed by the time the context is exited, returning to the original context
will be deferred until the end of the TRANSFER,; at that time the ON EOT event cannot be
serviced. To ensure that the event will be serviced, a statement that cannot be executed in
overlap with the TRANSFER must be executed before leaving the context. A WAIT FOR EOT
@Non_buf statement is used for this purpose.

The most recent ON EOT (or OFF EOT) definition for a given path name overrides any previous
ON EOT definition. If the overriding ON EOT definition occurs in a context different from the one
in which the overridden ON EOT occurs, the overridden ON EOT is restored when the calling
context is restored.

The priority can be specified. with the highest priority represented by 15. The highest user-
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON EOT can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON EOT priority is higher than the priority of the
service routine (the current system priority). CALL and GOSUB service routines get the priority
specified in the ON... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EOT statement.
CALL and GOSUB will return to the next line that would have been executed if the EOT event
had not been serviced, and the system priority is restored to that which existed before the ON
EOT branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOT statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON EOT is disabled by DISABLE and deactivated by OFF EOT.

2717

ON ERROR

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement defines and enables an event-initiated branch which results from a trappable
error. This allows you to write your own error handling routines.

RECOVER

. Range
Item Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON ERROR GOTO 1200
ON ERROR CALL Report

278 ON ERROR

Semantics

The ON ERROR statement has the highest priority of any event-initiated branch. ON ERROR
can interrupt any event-initiated service routine.

Anv specified line label or line number must be in the same context as the ON ERROR statement.
RECOVER forces the program to go directly to the specified line in the context containing the ON
ERROR statement.

Returns from ON ERROR GOSUB or ON ERROR CALL routines are different from regular
GOSUB or CALL returns. When ON ERROR is in effect, the program resumes at the beginning
of the line where the error occurred. If the ON ERROR routine did not correct the cause of the
error, the error is repeated. This causes an infinite loop between the line in error and the error
handling routine. When execution returns from the ON ERROR routine, system priority is
restored to that which existed before the ON ERROR branch was taken.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. In this case, the error is reported to
the user, as if ON ERROR had not been executed.

GOSUB and GOTO do not remain active when the context changes to a subprogram. If an
error occurs, the error is reported to the user, as if ON ERROR had not been executed.

If an execution error occurs while servicing an ON ERROR CALL or ON ERROR GOSUB,
program execution stops. If an execution error occurs while servicingan ON ERROR GOTO or
ON ERROR RECOVER routine, an infinite loop can occur between the line in error and the
GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for the
computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

Option Required

Keyboard Executable

Programmable
In an IF... THEN...

(@]
No
Yes
Yes

ON INTR

This statement defines an event-initiated branch to be taken when an interface card generates an
interrupt. The interrupts must be explicitly enabled with an ENABLE INTR statement.

CED =B

- »{ GOTO

O~ |

\ (CALL) | subgg;gram

l_./

Item Description/Default Re?t?itst!iims
interface select code numeric expression, rounded to an integer 5, 7 thru 31
priority numeric expression, rounded to an integer; 1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

subprogram name

name of a SUB or CSUB subprogram

Example Statements

ON INTR

7 GOSUB 300

ON INTR Iscd CALL Service

any valid name

279

280 ON INTR

Semantics

The occurrence of an interrupt performs an implicit DISABLE INTR for the interface. An
ENABLE INTR must be performed to re-enable the interface for subsequent event-initiated
branches. Another ON INTR is not required, nor must the mask for ENABLE INTR be redefined.

The priority can be specified, with highest priority represented by 15. The highest priority is less
than the priority for ON ERROR, ON END, and ON TIMEOUT. ON INTR can interrupt service
routines of other event-initiated branches which have user-definable priorities, if the ON INTR
priority is higher than the priority of the service routine (the current system priority). CALL and
GOSUB service routines get the priority specified in the ON... statement which set up the branch
that invoked them. The system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON INTR statement.
CALL and GOSUB will return to the next line that would have been executed if the INTR event
had not been serviced, and the system priority is restored to that which existed before the ON
INTR branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON INTR statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

ON INTR and OFF INTR statements may be executed for any I/O card in the machine. It is not
necessary to have a driver for the card.

ON KBD

Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN... Yes

This statement defines and enables an event-initiated branch to be taken when a key is pressed.

("on KkBD) - - =@——
ALL O ,- .
%CALL)—.I subﬁ;;gram I)

Item Description/Default Re?t?incggns
priority numeric expression, rounded to an integer; 1 thru 15
Default = 1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON KBD GOSUB 770
ON KBD 9 CALL Get_Kev

Semantics

Specifying the secondary keyword ALL causes all keys except (RESET), (SHIFT), and (_CTRL) to be
trapped. When ALL is omitted, the untrapped keys are those just mentioned, the softkeys,
(Pause), (sToP), (CLR 10), (BREAK), (System) ("user). (Menu), and (SHIFT)(Menu). When not trapped, these

keys perform their normal functions. When the softkeys are trapped, ON KBD branching overrides
any ON KEY branching.

A keystroke triggers a keyboard interrupt and initiates a branch to the specified routine when
priority allows. If keystrokes occur while branching is held off by priority, the keystrokes are
stored in a special buffer. When keystrokes are in the buffer, branching will occur when priority
allows. This buffer is read and cleared by the KBD$ function (see the KBD$ entry).

281

282

ON KBD

Knob rotation will generate ON KBD interrupts unless an ON KNOB statement has been executed.
Clockwise rotation of the knob produces right-arrow keystrokes; counterclockwise rotation produces
left-arrow keystokes. If the key is pressed while turning the knob then clockwise rotation of the
knob produces up-arrow keystrokes; counterclockwise rotation produces down-arrow key strokes.
Since one rotation of the knob is equivalent to 20 keystrokes, keyboard buffer overflow may occur if
the BASIC service routine does not process the keys rapidly.

Live keyboard, editing, and display control functions are suspended during ON KBD. To restore
a key’s normal function the keystroke may be OUTPUT to select code 2.

The most recent ON KBD (or OFF KBD) definition overrides any previous ON KBD definition. If
the overriding ON KBD definition occurs in a context different from the one in which the
overridden ON KBD occurs, the overridden ON KBD is restored when the calling context is
restored.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). ON KBD can interrupt sevice routines of other event-initiated branches
with user-definable priorities, if the ON KBD priority is higher than the priority of the service
routine (the current system priority). CALL and GOSUB service routines get the priority specified
in the ON... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KBD statement.
CALL and GOSUB will return to the next line that would have been executed if the KBD event
had not been serviced, and the system priority is restored to that which existed before the ON
KBD branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KBD statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KBD is disabled by DISABLE, deactivated by OFF KBD, and temporarily deactivated when
the program is executing LINPUT, INPUT, or ENTER 2.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is present.

ON KEY

Option Required None
Keyboard Executable No
Programmable Yes
In an [F... THEN... Yes

This statement defines and enables an event-initiated branch to be taken when a softkey is
pressed.

(ON KEY Hs e lkeecyt or

LABEL prompt priority
G O]
\ (CALL) > l subgg;gr‘am | J
Item Description/Default Range
Restrictions
key selector numeric expression, rounded to an integer 0 thru 23
prompt string expression; —
Default = no label
priority numeric expression, rounded to an integer; 1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON KEY O GOTO 150
ON KEY 5 LABEL "Print"»3 GOSUB Rerort

283

284 ON KEY

Semantics

The most recently executed ON KEY (or OFF KEY) definition for a particular softkey overrides
any previous key definition. If the overriding ON KEY definition occurs in a context different from
the one in which the overridden ON KEY occurs, the overridden ON KEY is restored when the
calling context is restored.

Labels appear in the two bottom lines of the CRT. The label of any key is bound to the current ON
KEY definition. Therefore, when a definition is changed or restored, the label changes according-
ly. If no label is specified, that label field is blank. Refer to the BASIC Programming Techniques
manual for a discussion of these labels.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ONEND, and ON TIMEOUT (whose priorities
are not user-definable). On KEY can interrupt service routines of other event-initiated branches
with user-definable priorities, if the ON KEY priority is higher than the priority of the service
routine (the current system priority). CALL and GOSUB service routines get the priority specified
in the ON... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KEY statement.
CALL and GOSUB will return to the next line that would have been executed if the KEY event
had not been serviced, and the system priority is restored to that which existed before the ON
KEY branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KEY statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deactivated when
the program is paused or executing LINPUT, INPUT, or ENTER 2.

Option Required
Keyboard Executable
Programmable

In an IF... THEN...

None
No
Yes
Yes

ON KNOB

This statement defines and enables an event-initiated branch to be taken when the knob is

turned.

CON KNOB)—-' seconds II

O | e

line
number

CALL subg;;gram
Item Description/Default Range
Restrictions
seconds numeric expression, rounded to the nearest 0.01 0.01 thru 2.55
second
priority numeric expression, rounded to an integer; 1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

subprogram name

name of a SUB or CSUB subprogram

Example Statements

ON KNOB .1 GOSUB

250

ON KNOB .333sPriority CALL Pulses

any valid name

285

286 ON KNOB

Semantics

Turning the knob (cursor wheel) generates pulses. After ON KNOB is activated (or re-activated),
the first pulse received starts a sampling interval. The “‘seconds’” parameter establishes the length
of that sampling interval. At the end of the sampling interval, the ON KNOB branch is taken if the
net number of pulses received during the interval is not zero and priority permits. The KNOBX
and KNOBY functions can be used to determine the number of pulses received during the
interval. If the ON KNOB branch is held off for any reason, the KNOBX and KNOBY functions
accumulate the pulses (see KNOBX and KNOBY).

The most recent ON KNOB (or OFF KNOB) definition overrides any previous ON KNOB
definition. If the overriding ON KNOB definition occurs in a context different from the one in
which the overridden ON KNOB occurs, the overridden ON KNOB is restored when the calling
context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). ON KNOB can interrupt service routines of other event-initiated bran-
ches with user-definable priorities, if the ON KNOB priority is higher than the priority of the
service routine (the current system priority). CALL and GOSUB service routines get the priority
specified in the ON... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KNOB statement.
CALL and GOSUB will return to the next line that would have been executed if the KNOB event
had not been serviced, and the system priority is restored to that which existed before the ON
KNOB branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KNOB statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
coritext was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KNOB is disabled by DISABLE and deactivated by OFF KNOB.

You can use a relative pointing device, such as the HP 46060A, on an HP 46020A keyboard, if
the KBD option is loaded.

ON SIGNAL

Option Required 10
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement defines and enables an event-initiated branch to be taken when a SIGNAL
statement with the same signal selector is executed.

(on stenaL i 219730 | 60TO

Ol

subprogram
name

ltem Description/Default Re?t?irgt;i‘:ms
signal selector numeric expression, rounded to an integer 0 thru 15
priority numeric expression, rounded to an integer; 1 thru 15
Default = 1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
suprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON SIGNAL 5 GOSUB 550
ON SIGNAL Bailout 15 RECOVER Bail_here

Semantics

The most recent ON SIGNAL (or OFF SIGNAL) definition for a given signal selector overrides
any previous ON SIGNAL definition. If the overriding ON SIGNAL definition occurs in a context
different from the one in which the overridden ON SIGNAL occurs, the overridden ON SIGNAL
is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user-
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON SIGNAL can interrupt service routines of other event-
initiated branches with user-definable priorities, if the ON SIGNAL priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

287

288 ON SIGNAL

Any specified line label or line number must be in the same context as the ON SIGNAL statement.
CALL and GOSUB will return to the next line that would have been executed if the SIGNAL
event had not been serviced, and the system priority is restored to that which existed before the
ON SIGNAL branch was taken. RECOVER forces the program to go directly to the specified line
in the context containing that ON SIGNAL statement. When RECOVER forces a change of
context, the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON SIGNAL is disabled by DISABLE and deactivated by OFF SIGNAL.

Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

ON TIME

This statement defines and enables an event-initiated branch to be taken when the real-time
clock reaches a specified time.

(ON TIME)—-Lseconas ', G0TO

line label

line number

I

O]

&

subprogram
CALL

. Range
Item Description/Default Restrictions
seconds numeric expression, rounded to the nearest 0.01 0 thru 86 399.99
second
priority numeric expression, rounded to an integer; 1 thru 15
Default = 1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
suprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON TIME 3G600#8 GOTO Work

ON TIME (TIMEDATE+3600) MOD BB400 CALL One_hour

289

290 ON TIME

Semantics

The most recent ON TIME (or OFF TIME) definition overrides any previous ON TIME definition.
If the overriding ON TIME definition occurs in a context different from the one in which the
overridden ON TIME occurs, the overridden ON TIME is restored when the calling context is
restored, but the time value of the more recent ON TIME remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user-
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON TIME can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON TIME priority is higher than the priority of the
service routine (the current system priority). CALL and GOSUB service routines get the priority
specified in the ON... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the TIME event
had not been serviced, and the system priority is restored to that which existed before the ON
TIME branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON TIME statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

Any specified line label or line number must be in the same context as the ON TIME statement.
CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

Unlike ON CYCLE, an ON TIME statement requires an exact match between the clock and the
time specified in the defining statement. If the event was missed and not logged, re-executing the
ON TIME statement will not result in a branch being taken.

ON TIME is disabled by DISABLE and deactivated by OFF TIME.

ON TIMEOUT

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement defines and enables an event-initiated branch to be taken when an I/O timeout
occurs on the specified interface. (If using ON TIMEOUT with SRM, also refer to the “SRM”’
section of this manual.)

CREN = EEEN 0

subpraogram
CALL

Item Description/Default Re?t?itst;ii ns
interface select code numeric expression, rounded to an integer 7 thru 31
seconds numeric expression, rounded to the nearest 0.001 thru 32.767
0.001 second
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB or CSUB subprogram any valid name

Example Statements

ON TIMEOUT 7 GOTO 770
ON TIMEOUT PrintersTime GOSUB Messade

Semantics

There is no default system timeout. If ON TIMEOUT is not in effect for an interface, a device can
cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface and the interface has
not responded within the number of seconds specified. The computer waits at least the specified
time before generating an interrupt; however, it may wait up to an additional 25% of the specified
time.

291

292 ON TIMEOUT

Timeouts apply to ENTER and OUTPUT statements, and operations involving the PRINTER IS,
PRINTALL IS, and PLOTTER IS devices when they are external. Timeouts do not apply to
CONTROL, STATUS, READIO, WRITEIO, CRT alpha or graphics /O, real time clock I/O,
keyboard I/O, or mass storage operations.

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON ERROR
have the same priority as ON TIMEOUT, and can interrupt an ON TIMEOUT service routine.

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one during which
the timeout occurred, and the system priority is restored to that which existed before the ON
TIMEOUT branch was taken. RECOVER forces the program to go directly to the specified line in
the context containing that ON TIMEOUT statement. When RECOVER forces a change of
context, the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard originated call. GOSUB and GOTO do not remain
active when the context changes to a subprogram.

ON TIMEOUT is deactivated by OFF TIMEOUT. DISABLE does not affect ON TIMEOUT.

OPTION BASE

Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN... No

This statement specifies the default lower bound of arrays.

OPTION BASE

Example Statements

OPTION BASE 0
OPTION BASE 1

Semantics

This statement can occur only once in each context. If used, OPTION BASE must precede any
explicit variable declarations in a context. Since arrays are passed to subprograms by reference,
they maintain their orginal lower bound, even if the new context has a different OPTION BASE.
Any context that does not contain an OPTION BASE statement assumes default lower bounds
of zero.

The OPTION BASE value is determined at prerun, and is used with all arrays declared without
explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well as with all
implicitly dimensioned arrays. OPTION BASE is also used at runtime for any arrays declared
without lower bounds in ALLOCATE.

OPTIONAL

See the DEF FN and SUB statements.

293

294

OR

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This operator returns a 1 or a O based on the logical inclusive-or of the arguments.

numeric OR numeric
expression expression

Example Statements
= OR Z
IF File_tvpe OR Device THEM Process

Semantics

An expression which evaluates to a non-zero value is treated as a logical 1. An expression must
evaluate to zero to be treated as a logical 0.

The truth table is:

output items

295

OUTPUT

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement outputs items to the specified destination. (If using OUTPUT with SRM, also refer
to the ‘“SRM” section of this manual.)

COUTPUT}—-' destinat ionJI—

Expanded diagram
destination image items
A A

~ Al r N

ouTPUT (@) /2.0e" - : -~ .
L@SING R

image line
label
image
specifier

record
number

device .
selector
destination $
string name

subs

=

AR y
(o
((N
/-
| string I . . .
T l_expression] \ Lj - -
(&)

string
-I array name (*))—-—.
numeric
expression
\ | numeric I () /
array name (*)

— A

trailing punctuation
not allowed with USING

296 OUTPUT

literal form of file specifier:

(e
/

image
specifier list |

Lo~

Item

image
specifier list

Description/Default

Range
Restrictions

/O path name

record number
device selector
destination string name

subscript

image line number
image line label
image specifier
string array name
numeric array name
image specifier list
repeat factor

literal

name assigned to a device, devices, mass storage
file, or buffer

numeric expression, rounded to an integer
numeric expression, rounded to an integer
name of a string variable

numeric expression, rounded to an integer

integer constant identifying an IMAGE statement
name identifying an IMAGE statement

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of characters from the
keyboard, including those generated using the
ANY CHAR key

any valid name

1thru 2 ~1
(see Glossary)

any valid name

—32 767 thru +32 767
(see “array” in Glossary)

1 thru 32 766
any valid name
(see drawing)
any valid name
any valid name
(see next drawing)
1 thru 32 767

quote mark not allowed

image specifier list

OUTPUT

JafeYclolo

C

®

®

repeat
factor

Shaded items
require IO

ESZ

ESZZ

B30

Radix specifier cannot
be used without a
digit specifier.

297

298 OUTPUT

Example Statements

DUTPUT 701 iNumbersStrind$;
OUTPUT BFilesArrav (%) ,END

OQUTPUT @Rands3 USING Fmtliltem(S)
OQUTPUT 12 USING "#,6A" B$[2361]
OUTPUT @PrinteriRankiIdiName$

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E — 4 and less than 1E + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Arrays

Entire arrays may be output by using the asterisk specifier. Each element in an array is treated as
an item by the OUTPUT statement, as if the items were listed separately, separated by the
punctuation following the array specifier. If no punctuation follows the array specifier, a comma is
assumed. The array is output in row major order (rightmost subscript varies fastest.)

Files as Destination
Ifan I/O path has been assigned to a file, the file may be written to with OUTPUT statements. The
file must be an ASCII or BDAT file. The attributes specified in the ASSIGN statement are used if
the file is a BDAT file.

Serial access is available for both ASCII and BDAT files. Random access is available for BDAT
files. The end-of-file marker (EOF) and the file pointer are important to both serial and random
access. The file pointer is set to the beginning of the file when the file is opened by an ASSIGN.
The file pointer always points to the next byte to be written by serial OUTPUT operations. The
EOF pointer is read from the media when the file is opened by an ASSIGN. On a newly-created
file, EOF is set to the beginning of the file. After each OUTPUT operation, the EOF is updated
internally to the maximum of the file pointer or the previous EOF value. The EOF pointer is
updated on the media at the following times:

® When the current end-of-file changes.
® When END is specified in an OUTPUT statement directed to the file.

® When a CONTROL statement directed to the I/O path name changes the position of the
EOF.

Random access uses the record number parameter to write items to a specific location in a file.
The OUTPUT begins at the start of the specified record and must fit into one record. The record
specified cannot be beyond the record containing the EOF, if EOF is at the first byte of a record.
The record specified can be one record beyond the record containing the EOF, if EOF is not at the
first byte of a record. Random access is always allowed to records preceding the EOF record. If
you wish to write randomly to a newly created file, either use a CONTROL statement to position
the EOF in the last record, or write some “dummy’’ data into every record.

OUTPUT 299

When data is written to an ASCII file, each item is sent as an ASCII representation with a 2-byte
length header. Data sent to a BDAT file is sent in internal format if FORMAT is OFF, and is sent as
ASCII characters if FORMAT is ON. (See ‘‘Devices as Destination’” for a description of these
formats.)

Devices as Destination

An /O path or a device selector may be used to direct OUTPUT to a device. If a device selector is
used, the default system attributes are used (see ASSIGN). If an I/O path is used, the ASSIGN
statement used to associate the I/O path with the device also determines the attributes used. If
multiple listeners were specified in the ASSIGN, the OUTPUT is directed to all of them. If
FORMAT ON is the current attribute, the items are sent in ASCII. Items followed by a semicolon
are sent with nothing following them. Numeric items followed by a comma are sent with a comma
following them. String items followed by a comma are sent with a CR/LF following them. If the
lastitem in the OUTPUT statement has no punctuation followingit, the current end-of-line (EOL)
sequence is sent after it. Trailing punctuation eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in the computer’s internal
format. Punctuation following items has no effect on the OUTPUT. Two bytes are sent for each
INTEGER, eight bytes for each REAL. Each string output consists of a four byte header
containing the length of the string, followed by the actual string characters. If the number of
characters is odd, an additional byte containing a blank is sent after the last character.

CRT as Destination

If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT 1 and PRINT differ in
their treatment of separators and print fields. The OUTPUT format is described under ‘‘Devices
as Destination’’. See the PRINT keyword for a discussion of that format. OUTPUT 1 USING and
PRINT USING to the CRT produce similar actions.

Keyboard as Destination

Outputs to device selector 2 may be used to simulate keystrokes. ASCII characters can be sent
directly (i.e. “hello”’). Non-ASCII keys (such as ((EXECUTE)) are simulated by a two-byte sequ-
ence. The first byte is CHR$(255), and the second byte can be found in the *‘Second Byte of
Non-ASCII Key Sequences’ table in the back of this book.

When simulating keystrokes, unwanted characters (such as the EOL sequence) can be avoided
with an image specifier (such as “#,B” or “‘# K"’). See “OUTPUT with USING”.

Strings as Destination
If a string is used for the destination, the string is treated similarly to a file. However, there is no file
pointer; each OUTPUT begins at the beginning of the string, and writes serially within the string.

Buffers as Destination (Requires TRANS)

When the destination is an [/O path name assigned to a buffer, data is placed in the buffer
beginning at the location indicated by the buffer’s fill pointer. As data is sent, the current
number-of-bytes register and fill pointer are adjusted accordingly. Encountering the empty
pointer (buffer full) produces an error unless a continuous outbound TRANSFER is emptying the
buffer. In this case, the OUTPUT will wait until there is more room in the buffer for data.

300 OUTPUT

If an I/O path is currently being used in an inbound TRANSFER, and an OUTPUT statement uses
it as a destination, execution of the OUTPUT is deferred until the completion of the TRANSFER.
An OUTPUT can be concurrent with an outbound TRANSFER only if the destination is the /O
path assigned to the buffer.

An OUTPUT to a string variable that is also a buffer will not update the buffer’s pointers and will
probably corrupt the data in the buffer.

Using END with Devices

The secondary keyword END may be specified following the last item in an OUTPUT statement.
The result, when USING is not specified, is to suppress the EOL (End-of-Line) sequence that
would otherwise be output after the last byte of the last item. If a comma is used to separate the
last item from the END keyword, the corresponding item terminator is output (CR/LF for string
items or comma for numeric items).

With HP-IB interfaces, END specifies an EOI signal to be sent with the last data byte of the last
item. However, if no data is sent from the last output item, EOI is not sent. With Data Com-
munications interfaces, END specifies an end-of-data indication to be sent with the last byte of the
last output item.

OUTPUT With USING

When the computer executes an OUTPUT USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas) as it is
encountered. If nothing is required from the output items, the field specifier is acted upon without
accessing the output list. When the field specifier requires characters, it accesses the next item in
the output list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
output item. If the image specifiers are exhausted before the output items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifier, trailing blanks are used to fill out the field.

Effects of the image specifiers on the OUTPUT statement are shown in the following table:

OUTPUT 301

Image
Specifier Meaning
K Compact field. Outputs a number or string in standard form with no leading or trailing
blanks.
-K Same as K.
H Similar to K, except the number is output using the European number format (comma

radix). (Requires I0)
-H Same as H. (Requires 10)

S Outputs the number’s sign (+ or —).
M Outputs the number’s sign if negative, a blank if positive.
D Outputs one digit character. A leading zero is replaced by a blank. If the number is negative

and no sign image is specified, the minus sign will occupy a leading digit position. If a sign is
output, it will “float” to the left of the left-most digit.

z Same as D, except that leading zeros are output.
* Like D, except that asterisks are output instead of leading zeros. (Requires 10)

Outputs a decimal-point radix indicator.

R Outputs a comma radix indicator (European radix). (Requires 10)
E Outputs an E, a sign, and a two-digit exponent.
ESZ Outputs an E, a sign, and a one-digit exponent.

ESZZ Same as E.
ESZzz Outputs an E, a sign, and a three-digit exponent.

A Outputs a string character. Trailing blanks are output if the number of characters speci-
fied is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are

ignored.
X Outputs a blank.
literal Outputs the characters contained in the literal.
B Outputs the character represented by one byte of data. This is similar to the CHR$

function. The number is rounded to an INTEGER and the least-significant byte is sent. If
the number is greater than 32 767, then 255 is used: if the number is less than
—32 768, then O is used.

302 OUTPUT

Image
Specifier

Meaning

W

Yo

@

Outputs a 16-bit word as a two’s-complement integer. The corresponding numeric item is
rounded to an INTEGER. If it is greater than 32 767. then 32 767 is sent: if it is less than
—32 768, then —32 768 is sent. If either an /O path name with the BYTE attribute or a
device selector is used to access an 8-bit interface, two bytes will be output: the most-
significant byte is sent first. If an [/O path name with the BYTE attribute is used to access a
16-bit interface, the BYTE attribute is overridden, and one word is output in a single
operation. If an 1/O path name with the WORD attribute is used to access a 16-bit interface.
a null pad byte is output whenever necessary to achieve alignment on a word boundary. If
the destination is a BDAT file, string variable, or buffer, the BYTE or WORD attribute is
ignored and all data are sent as bytes; however, pad byte(s) will be output when necessary
to achieve alignment on a word boundary. The pad character may be changed by using the
CONVERT attribute: see the ASSIGN statement for further information.

Like W. except that no pad bytes are output to achieve word alignment. If an [/O path with
the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is not overridden
(as with the W specifier above). (Requires [0O)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the last
output item.

Ignored in OUTPUT images.

Changes the automatic EOL sequence that normally follows the last output item to a single
carriage-return. (Requires 10)

Changes the automatic EOL sequence that normally follows the last output item to a single
line-feed. (Requires 10)

Outputs a carriage-return and a line-feed.

Outputs the current end-of-line (EOL) sequence. The default EOL characters are CR and
LF; see ASSIGN for information on re-defining the EOL sequence. If the destination is an
I/0 path name with the WORD attribute, a pad byte may be sent after the EOL characters to
achieve word alignment.

Outputs a form-feed.

END with OUTPUT...USING

Using the optional secondary keyword END in an OUTPUT...USING statement produces re-
sults which differ from those in an OUTPUT statement without USING. Instead of always
suppressing the EOL sequence, the END keyword only suppresses the EOL sequence when no
data is output from the last output item. Thus, the # image specifier generally controls the
suppression of the otherwise automatic EOL sequence.

With HP-IB interfaces, END specifies an EOl signal to be sent with the last byte output. However,
no EOl is sent if no data is sent from the last outputitem or the EOL sequence is suppressed. With
Data Communications interfaces, END specifies an end-of-data indication to be sent at the same
times an EOI would be sent on HP-IB interfaces.

303

PARITY

See the ASSIGN statement.

304

PASS CONTROL

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement is used to pass the capability of Active Controller to a specified HP-IB device.

I/0 path
name

selector

PASS CONTROL

. Range
Item Description/Default Restrictions
/O path name name assigned to an HP-IB device any valid name
device selector numeric expression, rounded to an integer must contain primary
address
(see Glossary)

Example Statements

PASS CONTROL 7189
PASS CONTROL EController_19

Semantics

Executing this statement first addresses the specified device to talk and then sends the Take
Control message (TCT), after which Attention is placed in the False state. The computer then
assumes the role of a bus device (a non-active controller).

The computer must currently be the active controller to execute this statement, and primary
addressing (but not multiple listeners) must be specified.

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active TAD TAD
Error
Controller Error 1CT TCT
ATN ATN
Not Active Error
Controller

PAUSE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN Yes

This statement suspends program execution. (Also see TRACE PAUSE.)

Semantics

PAUSE suspends program execution before the next line is executed, until the (CONTINUE) key is
pressed or CONT is executed. If the program is modified while paused, RUN must be used to
restart program execution.

When program execution resumes, the computer attempts to service any ON INTR events that
occurred while the program was paused. ON END, ON ERROR, or ON TIMEOUT events
generate errors if they occur while the program is paused. ON KEY and ON KNOB events are
ignored while the program is paused.

Pressing the (or on HP 46020A keyboard) key, or typing PAUSE and pressing
(LExecuTE) (ENTER) or (_RETURN) will suspend program execution at the end of the line currently being
executed.

305

306

PDIR

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement specifies the angle with which IPLOT, RPLOT, POLYGON, POLYLINE, and
RECTANGLE output are rotated.

COREN

Range

Item | Description/Default ‘ Restrictions

angle numeric expression in current units of angle: De-

fault = 0.

Example Statements
PDIR 20
PDIR ACS(Side)

Semantics
The rotation is about the local origin of the RPLOT, POLYGON, POLYLINE or RECTANGLE.

The angle is interpreted as counter-clockwise rotation from the X-axis.

PEN

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN Yes

This statement selects a pen value to be used for all subsequent lines. (For information about PEN
as a secondary keyword, see the AREA statement.)

CPEN)_.I se lpeecnt OFJ_,|

. Range
Item | Description/Default | Restrictions
pen selector

numeric expression, rounded to an integer —32 768 thru +32 767
{device dependent)

Example Statements

PEN 4
PEN Select
PEN Pen.number{(IJ)

Semantics

For devices which support more than one line color (color CRT), or physical pen (external hard
copy plotters), this statement specifies the line color or physical pen to be used for all subsequent
lines until the execution of another PEN statement or until the execution of a PLOT, IPLOT,
RPLOT, or SYMBOL statement with an array argument which changes the pen color (see
Operation Selector 3 of these statements). The sign of the pen selectors affects the drawing
mode.

In color map mode, specifying PEN 14 actually means “‘write a 14 into the frame buffer.”” The
value of the frame buffer specifies the entry in the color map to be used, which in turn describes
the actual color to be used.

The PEN statement can also be used to specify that the current drawing mode is to erase lines on
all devices which support such an operation. This is specified with a negative pen number. An
alternate mode of operation which allows non-dominant and complementing drawing may be
accessed through the GESCAPE function.

307

308 PEN

When the PEN statement is executed, the pen used is mapped into the appropriate range,
retaining the sign. For example, if you specify pen + 8 on a device whose pens range from —7
through 7, it would actually use pen + 1. The formulae used are as follows:

For monochromatic displays:
If pen selector>0 then use PEN 1 (draw lines)
If pen selector=0then use PENO | (complement! lines)
If pen selector<0 then use PEN —1 (erase lines)

For the four-plane color displays not in COLOR MAP mode, and the HP 98627A:
If pen selector>0 then use PEN (pen selector—1) MOD 7 + 1

If pen selector =0 then use PEN 0 (complement)
If pen selector<0 then use PEN — ((ABS(pen selector) - 1) MOD 7+ 1)

For the four-plane color displays in COLOR MAP mode:

If pen selector>0 then use PEN (pen selector — 1) MOD MaxPen + 1

If pen selector =0 then use PEN O

If pen selector<0 then use PEN — ((ABS(pen selector) — 1) MOD MaxPen + 1)
where MaxPen is the highest pen number (the lowest is 0). Four planes: MaxPen = 15; eight
planes: MaxPen =255.

For an HPGL plotter:
use PEN pen selector

On an HPGL plotter, no checking is done to determine if the requested pen actually exists. Pen
zero puts away any pen if the plotter supports such an operation.

Non-Color Map Mode

The value written into the frame buffer depends not only on what pen is being used, but
whether or not the computer is in color map mode. The colors for the default (non-color map)
mode are given because the color map cannot be changed in this mode.

The meanings of the different pen values are shown in the tables below. The pen value can cause
eithera 1 (draw), a O (erase), no change, or invert the value in each location in the frame buffer.

Non-Color Map Mode

Plane 1 | Plane 2 | Plane 3

Pen Color (Red) | (Green) | (Blue)
1 White 1 1 1
2 | Red 1 0
3 Yellow 1 1 0
4 Green 0 1 0
5 | Cyan 0 1 1
6 | Blue 0 0 1
7 | Magenta 1 0 1

1 "Complement’’ means to change the state of pixels; that is, to draw lines where there are none, and to erase where lines already exist.

PEN 309

Drawing with the pen numbers indicated in the above table results in the memory planes being
set to the indicated values. Drawing with the negatives of the pen numbers while in normal pen
mode causes the bits to be cleared where there are 1s in the table. Drawing with the negatives of
the pen numbers while in alternate pen mode causes the bits to be inverted where there are 1sin
the table. In either case, no change will take place where there are Os in the table. Although

complementing lines can be drawn, complementing area fills cannot be executed.

Positive pen numbers in alternate drawing mode allows non-dominant drawing. (Non-dominant
drawing causes the values in the frame buffer to be inclusively OR ed with the value of the pen.)
Pen 0 in normal mode complements. Pen O in alternate mode draws in the background color.
Since the table represents the computer in non-color map mode, the fourth memory plane is

always cleared.

Color Map Mode

When operating the color display in color map mode, pen colors can be redefined at will. For this
reason, no colors are mentioned in the following table. Unlike non-color-map mode, the fourth
bit in the frame buffer is used when in color map mode. Also, memory planes 1, 2, and 3 are not

associated with red, green, and blue.

Drawing with a pen merely puts the pen number into that pixel’s location. The computer looks
into the corresponding entry in the color map to determine what the actual color the pixel is to

exhibit.

Color Map Mode
Pen Action Plane 1 | Plane 2 | Plane 3 | Plane 4
0 | Background 0 0 0 0
1 Draw Pen 1 1 0 0 0
2 Draw Pen 2 0 1 0 0
3 Draw Pen 3 1 1 0 0
4 Draw Pen 4 0 0 1 0
5 Draw Pen 5 1 0 1 0
6 Draw Pen 6 0 1 1 0
7 Draw Pen 7 1 1 1 0
8 Draw Pen 8 0 0 0 1
9 Draw Pen 9 1 0 0 1
10 | Draw Pen 10 0 1 0 1
11 | Draw Pen 11 1 1 0 1
12 | Draw Pen 12 0 0 1 1
13 | Draw Pen 13 1 0 1 1
14 | Draw Pen 14 0 1 1 1
15 | Draw Pen 15 1 1 1 1

Drawing with the negatives of the pen numbers while in normal pen mode causes the bits to be
cleared where there are 1s in the table. Drawing with the negatives of the pen numbers while in
alternate pen mode causes the bits to be inverted where there are 1sin the table. In either case, no
change will take place where there are Os in the table.

Pen 0 merely draws in the background color. Although complementing lines can be drawn,
complementing area fills cannot be executed.

310 PEN

Default Colors
The RGB and HSL values for the default pen colors while in color map mode are shown below.
These can be changed by the SET PEN statement. First, the RGB (red/green/blue) values:

Color Map Default Color Definitions (RGB)

Pen Color Red | Green | Blue
0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 | Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1\ 0 1
8 Black 0 0 0
9 Olive Green .80 73 .20
10 | Aqua .20 .67 .47
11 | Royal Blue .53 .40 67
12 | Maroon .80 27 .40
13 | Brick Red 1.00 .40 20
14 | Orange 1.00 47 0.00
15 | Brown .87 .53 27

The same default color map colors are represented below in their HSL (hue/saturation/luminos-
ity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue Sat. Lum.
0 Black 0 0 0
1 White 0 0 1
2 Red 0 1 1
3 Yellow 17 1 1
4 Green .33 1 1
5 Cyan .50 1 1
6 Blue .67 1 1
7 Magenta .83 1 1
8 Black 0 0 0
9 Olive Green 15 .75 .80
10 | Aqua 44 .75 .68
11 | Royal Blue 75 .36 .64
12 | Maroon .95 .65 .78
13 | Brick Red .04 .80 1.00
14 | Orange .08 1.00 1.00
15 | Brown .08 .70 .85

311

PENUP
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement lifts the pen on the current plotting device.

312

Pl
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns 3.141 592 653 589 79, which is an approximate value for .

Example Statements

Area=PI#*Radius”™2
PRINT X x%2Z%PI

GRAPH PIVOT

Option Required

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement specifies a rotation of coordinates which is applied to all subsequently drawn lines.

G’IVOD—.{ ang le—l—-l

. Range
Item l Description/Default | Restrictions

angle [numeric expression in current units of angle I (same as COS)

Example Statements

PIVOT 30
IF Special THEN PIVDT Radians

Semantics
The specified angle is interpreted according to the current angle mode (RAD or DEG).

The specified angular rotation is performed about the logical pen’s position at the time the PIVOT
is executed. This rotation is applied only to lines drawn subsequent to the PIVOT; logical pen
movement is not affected by PIVOT. Consequently, PIVOT generally causes the logical and
physical pens to be left at different positions. Other operations which cause similar effects are
attempts to draw outside clip limits and direct HPGL output to plotters.

313

314

PLOT

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement moves the pen from the current pen position to the specified X and Y coordinates.
It can be used to move without drawing, or to draw a line, depending on the pen control value.

X
pen
control

Y
coordinate

| GRaPHX
Item Description/Default Rang_e
Restrictions

X coordinate numeric expression, in current units —

y coordinate numeric expression, in current units —_

pen control numeric expression, rounded to an integer; —32 768 thru + 32 767
Default = 1 (down after move).

array name name of two-dimensional, two-column or three- any valid name
column numeric array. (Requires GRAPHX)

Example Statements

PLOT XY +-1
PLOT -5,12
PLOT Share(*) FILLEDGE

Semantics

Non-Array Parameters
The specified X and Y position information is interpreted according to the current unit-of-
measure. Lines are drawn using the current pen color and line type.

PLOT is affected by the PIVOT transformation.

The line is clipped at the current clipping boundary. If none of the line is inside the current clip
limits, the pen is not moved, but the logical pen position is updated.

PLOT

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

The optional pen control parameter specifies the following plotting actions; the default value is
+1 (down after move).

Pen Control Parameter

Pen Control Resultant Action
—Even Pen up before move
—0Odd Pen down before move
+Even Pen up after move
+0dd Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion.

Array Parameters

When using the PLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be +1: pen
down after move.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes the polygons de-
fined within it to be filled with the current fill color and/or edged with the current pen color. If
polygon mode is entered from within the array, and the FILL/EDGE directive for that series of
polygons differs from the FILL/EDGE directive on the PLOT statement itself, the directive in
the array replaces the directive on the statement. In other words, if a “‘start polygon mode”’
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the PLOT statement, FILL occurs first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

315

316 PLOT

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be
edged, regardless of the directives on the statement.

When using a PLOT statement with an array, the following table of operation selectors ap-
plies. An operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op-
erations. Polygons may be defined, edged (using the current pen), filled (using the current fill
color), pen and line type may be selected, and so forth. See the list below.

Operation
Column 1 Column 2 Selector | Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array PLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.

The value in column two is ignored.

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu-
ated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works

identically to the AREA PEN statement. Column one contains the pen number.

PLOT 317

Defining a Fill Color

Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessarily immediately), is a row whose operation selector in col-
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities (which range from O thru 1) for red, green, and

blue in the variables R, G, and B, respectively, the value for the first column in the array could
be defined thus:

Arrav(Rows1)=SHIFT(1G#(1-B)+-10)+SHIFT(16%#(1-G) +-5)+16%#(1-R)

If there is a pen color in the color map similar to that which you request here, that non-
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons

A six, ten, or eleven in the third column of the array begins a ‘‘polygon mode’’. If the opera-
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11, the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify-
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec-
tors 6, 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

318 PLOT

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the PLOT statement, so one probably would not have more than one
operation selector 12 in an array to PLOT, since the last FRAME will overwrite all the pre-
vious ones.

Premature Termination

Operation selector 8 causes the PLOT statement to be terminated. The PLOT statement will
successfully terminate if the actual end of the array has been reached, so use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than —2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

319

PLOTTER IS

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement selects a plotting device. (If using PLOTTER IS with SRM, also refer to the ““SRM”’
section of this manual.)

(PLoTTeR 15 sdlecter e -
1
sispiey speerrier) COLOR MAP
specifier J
o o 0 O
literal form of display/plotter specifier:
INTERNAL ("
98627A
literal form of file specifier:
file
name
T oo o=
Item Description/Default Range

Restrictions

device selector numeric expression, rounded to an integer {see Glossary)

display/plotter specifier string expression (see drawing)

color map display string expression INTERNAL

specifier

file specifier string expression (see drawing)

file name literal any valid file name

protect code literal: first two non-blank characters are signifi- *“>"" not allowed

cant

320 PLOTTERIS

Item Description/Default Re?térlir:t;ii)ns
msus literal {see MASS STORAGE
IS)

xmin numeric expression; device dependent
Default = —392.75mm

Xmax numeric expression; device dependent
Default = 392.75mm

ymin numeric expression; device dependent
Default = —251.5mm

yrnax numeric expression; device dependent

Default = 251.5mm

Example Statements

PLOTTER IS 3,1%

PLOTTER IS CRT,"INTERNAL"SCOLOR MAP

PLOTTER IS Dsgs"HPGL"

PLOTTER IS "Newfile" ,"HPGL"

PLOTTER IS "Plotfile:REMOTE" s"HPGL":6.25+256.25,6.8753,+186.975

Semantics
Files

The file must be a BDAT file. This statement causes all subsequent plotter output to go to the
specified file.

Xmin,xmax,ymin,ymax are the hard clip limits of the plotter in millimetres.

This assumes .025mm per plotter unit. The default size is for an HP 7580 or HP 7585 D-size
drawing. See the plotter manual for more information on plotter limits.

The PLOTTER IS statement positions the file pointer to the beginning of the file.

The file is closed when another PLOTTER IS statement is executed or SCRATCH A, GINIT or
Reset is executed.

An end of file error occurs when the end of file is reached.

Plotters

The hard clip limits of the plotter are read in when this statement is executed. Therefore, the
specified device must be capable of responding to this interrogation.

PLOTTERIS 321

Displays

The statement PLOTTER IS CRTs "INTERNAL" is executed whenever a graphics statement is
executed which needs a plotter (see GINIT) and no plotter is active. The plotter activated is the first
device encountered in the following order:

The alpha display, if it has graphics capabilities,

Internal 98542A, 98543A, 98544A, 98545A, or 98700 at select code 6,
Non-bit-mapped alpha display with graphics capabilities at select code 3,
External 98700 at select code >7,

5. 98627A at select code >7.

W=

If the COLOR MAP option is not included and the plotting device is the Model 236 color display,
the 4th memory plane is cleared.

If the COLOR MAP option is specified and the plotting device has a color map, the capability of
changing the color map will be enabled (see SET PEN). Also, the values written into the frame
buffer are different than they would be if color map mode was not enabled.

HP 98627A Emulation

To emulate the HP 98627A non-color-mapped device on a color display, execute a PLOTTER IS
statement withoutthe COLOR MAP keyword. This causes the color map to be defined as follows,
where 0 is zero intensity and 1 is full intensity.

HP 98627A Non-Color Map Emulation

Pen Color Red | Green | Blue
0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0

9-15 | White 1 1 1

The complementing cursor will be white on top of all colors except white, in which case it will be
black. In this detail, the cursor implementation is not an emulation of the 98627A.

322 PLOTTERIS

COLOR MAP
In the COLOR MAP mode, the color map is initialized so that the first eight colors are the same as
they were in the default mode, and the second eight colors simulate HP’s designer colors of
plotter pen ink.

Although the pen numbers select the same color in color map mode as in non-color map mode
(for the first eight pens), the actual values written to the frame buffer are different. This results
from the different interpretation of the values in the frame buffer: in non-color map mode, the
values are RGB values; in color-map mode, the values are indices into the color map. This means
that a picture drawn in non-color map mode will change colors ifa PLOTTER IS with the COLOR
MAP option is executed. The reverse is also true.

When the PLOTTER 1§ statement is executed, the color map is initialized to a default state. If the
graphics write-enable mask is left in the default mode, the entire color map will be initialized as
before. Otherwise, the following algorithm is used: all color map entries whose binary representa-
tion has 1s only in graphics planes are initialized; color map entries whose binary representation
has 1s in non-graphics planes will remain unchanged. This is done to insure that only pens
dedicated to graphics are initialized. For example, with a graphics write mask of 7 (binary

0000 0111), only pens O through 7 are initialized. Higher numbered pens would remain un-
changed since their binary representation would have 1s in non-graphics planes.

Display Specifiers
There are several values which can be used when specifying the display on which graphics
operations are done:

PLOTTER 15 CRT."INTERNAL" Or This is the safest of the possibilities. “‘CRT’’ is a built-

PLOTTER IS5 1+"INTERNAL" in function which returns the value 1, and the value
1 is interpreted by the graphics system as ‘‘the de-
fault display.”” The default display may be an exter-
nal display if no internal display exists.

PLOTTER IS 3,"INTERNAL" This specifies a non-bit-mapped display if there is
one; otherwise, the action is equivalent to
“PLOTTER IS5 1,"INTERNAL"”. Specifying a value of

3 makes sense for all Series 200 displays except the
Model 237.

PLOTTER 15 6" INTERNAL" Always specifies a bit-mapped display. If one is not
found, an error results.

PLOTTER 15 (device selector)"98627a"" This specifies a color graphics display connected
through the 98627A interface card. This may have
any one of several options specifying television for-
mat, etc.

PLOTTER IS (device selector),"INTERNAL" With the 98700 display, it is possible to configure
the display card so that it is at an external select
code. For example, if you set the select code to 25,
you would say:

PLOTTER IS 2Z5+"INTERNAL"

1 PLOTTER IS (device selectory " INTERNAL" is also accepted. and acts the same as "98627A"

PLOTTER IS 323

Default Pen Colors
The PLOTTER IS statement defines the color map to default values. Thes value are different

depending on whether or not the COLOR MAP option was selected. Below are two color plates
showing the eight default colors available with non-color map mode, and the sixteen default

colors in color map mode.

Default Non—-Color Map Colors

Pen B Pen 1! Pen 2 Pan 3 Pen 4 Pen 3 Pen 8 Pen 7
Blaok Whits Red Yellow Green Cvan Biue Magenta

Default Color Map Colors

Pan @ Pen 1| Pan 2 FPen 3 Pen 4 Pen 5 Pen & Pan)
Black White Red Yellow Green Cyan Blue Magenta

{

]E’

Pen 8 Pen 9 Pan 10 Pen 11 Pen 12 Pen 13 Pen 14 Pen
Black Olive Agqua Royal Maroan Brick Orange Brown
Green Blue Red

324 PLOTTERIS

The values, both in RGB and HSL, of the sixteen default pen colors are given below:

Color Map Default Color Definitions (RGB)

Pen Color Red | Green | Blue
0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 | Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0
9 Olive Green .80 .73 .20
10 | Aqua .20 .67 47
11 | Royal Blue .53 .40 .67
12 | Maroon .80 .27 40
13 | Brick Red 1.00 .40 .20
14 | Orange 1.00 47 0.00
15 | Brown .87 .53 27

The same default color map colors are represented below in their HSL (hue/saturation/luminos-
ity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue Sat. Lum.
0 Black 0 0 0
1 White 0 0 1
2 Red 0 1 1
3 | Yellow 17 1 1
4 Green .33 1 1
5 | Cyan .50 1 1
6 | Blue .67 1 1
7 | Magenta .83 1 1
8 | Black 0 0 0
9 Olive Green .15 .75 .80
10 | Aqua .44 .75 .68
11 | Royal Blue .75 .36 .64
12 | Maroon .95 .65 .78
13 | Brick Red .04 .80 1.00
14 | Orange .08 1.00 1.00
15 | Brown .08 .70 .85

Eight-plane machines have 256-entry color maps. In these machines, pens 16 through 255 are
defined to a variety of shades. For exact values, interrogate the color map with GESCAPE.

POLYGON

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This statement draws all or part of a closed regular polygon. The polygon can be filled and/or
edged.

CPOLYGON)—DIr‘ad ms} . ' -
o OG0 -

sides
to draw -\’

X

. Range
Item Description/Default Restrictions
radius numeric expression, in current units —
total sides numeric expression, rounded to an integer. 3 thru 32 767
Default =60
sides to draw numeric expression, rounded to an integer. 1 thru 32 767
Default = all sides.

Example Statements

POLYGON 1.5:5+4,FILLEDGE
POLYGON 4

Semantics

The radius is the distance that the vertices of the polygon will be from the logical pen position. The
first vertex will be at a distance specified by ‘‘radius’” in the direction of the positive X-axis.
Specifying a negative radius results in the figure being rotated 180°. POLYGON is affected by the
PIVOT and the PDIR transformations.

The total sides and the number of sides drawn need not be the same. Thus

POLYGON 1.5:8,5

will start to draw an octagon whose vertices are 1.5 units from the current pen position, but will
only draw five sides of it before closing the polygon to the first point. If the number of sides to draw
is greater than the specified total sides, sides to draw is treated as if it were equal to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the last vertex, so there
is always an inside and an outside area. This is true even for the degenerate case of drawing only
one side of a polygon, in which case a single line results. This is actually two lines, from the first
point to the last point, and back to the first point.

325

326 POLYGON

Polygon Shape

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the polygon to be distorted: stretched or
compressed along the axes. If a rotation transformation is in effect. the polygon will be rotated
first. then stretched or compressed along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less than total sides. If the
pen is up at the time POLYGON is specified. the first vertex specified is connected to the last
vertex specified, notincluding the center of the polygon, which is the current pen position. If the
pen is down, however, the center of the polygon is also included in it. If sides to draw is less than
total sides, piece-of-pie shaped polygon segments are created.

FILL and EDGE

FILL causes the interior of the polygon or polygon segment to be filled with the current fill color as
defined by AREA PEN, AREA COLOR, or AREA INTENSITY. EDGE causes the edges of the
polygon to be drawn using the current pen and line type. If both FILL and EDGE are specified,
the interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified, EDGE
is assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or EDGE
directives on the statement.

After POLYGON has executed, the pen is in the same position it was before the statement was
executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2. The starting point for labels drawn after other labels is affected by LDIR
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR

Option Required

Keyboard Executable

Programmable
Inan IF...THEN...

GRAPHX
Yes
Yes
Yes

This statement draws all or part of an open regular polygon.

(POLYLINE }—+]rauius|

i

total o
sides

sides

to draw

POLYLINE

Item Description/Default Re?t?;‘c?if)ns
radius numeric expression, in current units. —
total sides numeric expression, rounded to an integer. 3 thru 32 767
Default =60
sides to draw numeric expression, rounded to an integer. 1 thru 32 767

Default = all sides

Example Statements
POLYLINE RadiusSidessSides_to_draw

POLYLINE 12,5

Semantics

The radius is the distance that the vertices of the polygon will be from the current pen position.
The first vertex will be at a distance specified by “‘radius’’ in the direction of the positive X-axis.
Specifying a negative radius results in the figure being rotated 180°. POLYLINE is affected by the

PIVOT and PDIR transformation.

The total sides specified need not be the same as the sides to draw. Thus

POLYLINE 1.5:8+5

will start to draw an octagon whose vertices are 1.5 units from the current pen position, but will
only draw five sides of it. If the number of sides to draw is greater than the total sides specified, it is
treated as if it were equal to the total sides.

327

328 POLYLINE

Shape of Perimeter

POLYLINE does not force polygon closure, that is, if sides to draw is less than total sides, the first

vertex is not connected to the last vertex, so there is no ‘‘inside’” or “‘outside’ area.

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anistropic scaling causes the perimeter to be distorted; stretched or
compressed along the axes. If a rotation transformation is in effect, the polygon will be rotated

first, then stretched or compressed along the unrotated axes.

The pen status affects the way a POLYLINE statement works. If the pen is up at the time
POLYLINE is specified, the first vertex is on the perimeter. If the pen is down, the first point is the
current pen position, which is connected to the first point on the perimeter.

After POLYLINE has executed, the current pen position is in the same position it was before the
statement was executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling

Note 2: The starting point for labels drawn after other labels is affected by LDIR

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT

Note 4: RPLOT and IPLOT are affected by PDIR.

329

POS

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the first position of a substring within a string.
tri tri
(Pos (O O O

| Range

Item | Description/Default Restrictions

string searched string expression | —

string searched for string expression

Example Statements

Point=POS(Bidg$,Littles$)
IF POS(A%$,,CHR$(10)) THEN Line_end

Semantics

If the value returned is greater than 0, it represents the position of the first character of the string
being searched for in the string being searched. If the value returned is O, the string being
searched for does not exist in the string being searched (or the string searched for is the null

string).

Note that the position returned is the relative position within the string expression used as the first
argument. Thus, when a substring is searched, the position value refers to that substring, not to
the parent string from which the substring was taken.

330

PPOLL

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns a value representing eight status-bit messages of devices on the HP-IB.

I/0 path
name

select code

. Range
Item Description/Default Restrictions
/O path name name assigned to an interface select code any valid name
(see ASSIGN)
interface select code | numeric expression, rounded to an integer 7 thru 31
Example Statements
Stat=PPOLL(7)
IF BIT(PPOLL(BHPib)»3) THEN Respond
Semantics
The computer must be the active controller to execute this function.
Summary of Bus Actions
System Controller Not System Controiler
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25us) (duration=25ps)
Active Read byte Read byte
Controller EOI Error EOI Error
Restore ATN to Restore ATN to
previous state previous state
Not Active Error
Controller

Option Required

Keyboard Executable

Programmable

In an IF...THEN...

PPOLL CONFIGURE

10
Yes
Yes
Yes

This statement programs the logical sense and data bus line on which a specified device
responds to a parallel poll.

PPOLL CONFIGURE

Item

I/0 path
name
l-

configure
byte

selector

Description/Default

Range
Restrictions

Recommended
Range

[/O path name

device selector

configure byte

name assigned to a device or devices

numeric expression, rounded to an integer

numeric expression, rounded to an integer

any valid name

must contain a
primary address
(see Glossary)

— 32 768 thru
+32 767

0 thru 15

331

332 PPOLL CONFIGURE

Example Statements

PPOLL CONFIGURE 71132
PPOLL CONFIGURE BDumiResponse

Semantics

This statement assumes that the device’s response is bus-programmable. The computer must
be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data bus line for the
response. The fourth bit determines the logical sense of the response.

Summary of Bus Actions

Controller

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active Error UNL Error UNL
Controller LAG LAG
PPC PPC
PPE PPE
Not Active Error

PPOLL RESPONSE

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement defines a response to be sent when an Active Controller performs a Parallel Poll
on an HP-IB Interface. The response indicates whether this computer does or does not need
service.

PPOLL RESPONSE

I/0 path
name

select code

. Range Recommended
Item Description/Default Restrictions Range
/O path name name assigned to an interface select code any valid name —
interface select numeric expression, rounded to an integer 7 thru 31 —
code
[do/don’t numeric expression, rounded to an integer | O thru 32 767 Oor1l
need service
Examples

PPOLL RESPONSE @Hp_ibil.need.service
PPOLL RESPONSE Interfacei?

Semantics

This statement defines the computer’s response to a Parallel Poll (ATN & EOI) performed by the
current Active Controller on the specified HP-IB Interface. This statement only sets up a potential
response; no actual response is generated when the statement is executed.

If the value of the ‘I do/don’t need service’’ parameter is 0, the computer is directed to place a
logical false on the bit on which it has been defined to respond; this response will tell the Active
Controller that this (non-active) controller does not need service. Any non-zero, positive value of
this parameter (within the stated range) directs the computer to set up a true response, which will
tell a polling Active Controller that the computer requires service.

The bit on which the computer is to place its Parallel Poll response is determined by the value of
the last ‘‘configure byte’” written to CONTROL Register 5 of the corresponsing HP-IB Interface.
In general, this configure byte can be read from HP-IB STATUS Register 7 by the service routine
that responds to Parallel-Poll-Configuration-Change interrupts (Bit 14 of the Interrupt Enable
Register). This configure byte may then be written into HP-IB CONTROL Register 5, and the
response desired by the Active Controller will be sent when a Parallel Poll is conducted.

This statement may be executed by either an Active Controller or a non-active controller.

333

334

PPOLL UNCONFIGURE

Option Required

Keyboard Executable

Programmable

In an IF... THEN...

This statement disables the parallel poll response of a specified device or devices.

CPPOLL UNCONF IGURE

I/0 path

selector

10
Yes
Yes
Yes

L Range
Item l Description/Default Restrictions
[/O path name name assigned to a device or devices any valid name
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements

PPOLL UNCONFIGURE 7
PPOLL UNCONFIGURE EBPlotter

Semantics
The computer must be the active controller to execute PPOLL UNCONFIGURE.

If multiple devices are specified by an I/O path name, all specified devices are deactivated from
parallel poll response. If the device selector or I/O path name refers only to an interface select

code, all devices on that interface are deactivated from parallel poll response.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active .
Controller Error

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F.. THEN... Yes

PRINT

This statement sends items to the PRINTER IS device.

(PRINT)— -
USING)— }Tans

Expanded diagram

(PRINT) - -
image line
(_’GJSING number l_’
. image line
image label
items
image
L specifier
O——
1
~
O-
string 1
expression L o L

string

o O~

array name

print < | numeric }
items expression
~
*
— ma @D,

numeric

trailing punctuation
not allowed with USING

array name

‘
L) O—eotim ()

tab functions not allowed with USING

literal form of image specifier:

CRT
row

U
image
specifier list |
image

specifier 1list

Lo-

335

336 PRINT

image specifier list

JO®OO

repeat
factor

repeat
factor

. o)
T\

%

—_—

repeat
factor

ESZ

Radix specifier cannot

Shaded items
require IO

be used without a
digit specifier.

ESZZZ

e

PRINT

. Range Recommended
Item Description/Default Restrictions Range
image line number | integer constant identifying an IMAGE 1 thru 32 766 —
statement
image line label name identifying an IMAGE statement any valid name —
image specifier string expression (see drawing) —
string array name name of a string array any valid name —_
numeric array name of a numeric array any valid name —
name
column numeric expression, rounded to an integer | —32 768 thru device
+32 767 dependent
CRT column numeric expression, rounded to an integer | 0 thru 32 767 1 thru screen
width
CRT row numeric expression, rounded to an integer | 0 thru 32 767 1 thru 18
image specifier list literal (see next —_—
drawing)
repeat factor integer constant 1 thru 32 767 —
literal string constant composed of characters | quote mark not —
from the keyboard, including those gener- allowed
ated using the ANY CHAR key

Example Statements

PRINT
PRINT
PRINT
PRINT
PRINT

"LINE" §Number

Arravy(*) 3

TABXY(1+1) sHeaders sTABXY(Co0l+3) sMessades
USING "S2.DD" iMonevy

USING Fmt3ildsIltem$s+Kilodrams/2.,2

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E — 4 and less than 1E + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Automatic End-Of-Line Sequence

After the print list is exhausted, an End-Of-Line (EOL) sequence is sent to the PRINTER IS
device, unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier. The
printer width for EOL sequences generation is set to the screen width (50, 80 or 128 characters)
for CRTs and to 80 for external devices unless the WIDTH attribute of the PRINTER IS statement
was specified. WIDTH is off for files. This “‘printer width exceeded” EOL is not suppressed by
trailing punctuation, but can be suppressed by the use of an image specifier.

337

338 PRINT

Control Codes
Some ASCII control codes have a special effect in PRINT statements if the PRINTER IS device is
the CRT (device selector=1):

Character | Keystroke Name Action

CHR$(7) CTRL-G bell Sounds the beeper

CHR$(8) CTRL-H backspace Moves the print position back one character.

CHR$(10) | CTRL-J line-feed Moves the print position down one line.

CHR$(12) | CTRL-L form-feed Prints two line-feeds, then advances the
CRT buffer enough lines to place the next
item at the top of the CRT.

CHR$(13) | CTRL-M carriage-return Moves the print position to column 1.

The effect of ASCII control codes on a printer is device dependent. See your printer manual to
find which control codes are recognized by your printer and their effects.

CRT Enhancements

There are several character enhancements (such as inverse video and underlining) available on
some CRT’s. They are accessed through characters with decimal values above 127. For a list of
the characters and their effects, see the ‘‘Display Enhancement Characters’ table in ‘“Useful
Tables” at the back of this book.

Arrays

Entire arrays may be printed using the asterisk specifier. Each element in an array is treated as a
separate item, as if the elements were all listed and separated by the punctuation following the
array specifier. If no punctuation follows the array specifier, a comma is assumed. The array is
printed in row-major order (right-most subscript varies fastest).

PRINT Fields

If PRINT is used without USING, the punctuation following an item determines the width of the
item’s print field; a semicolon selects the compact field, and a comma selects the default print
field. Any trailing punctation will suppress the automatic EOL sequence, in addition to selecting
the print field to be used for the print item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are printed with
one trailing blank. String items are printed with no leading or trailing blanks.

The default print field prints items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is printed with one leading blank if the number is positive, or with a minus sign if the
number is negative, whether in compact or default field.

PRINT 339

TAB

The TAB function is used to position the next character to be printed on a line. In the TAB
function, a column parameter less than one is treated as one. A column parameter greater than
zero is subjected to the following formula: TAB position = ((column — 1) MOD width) + 1;
where “width” is 50 for the Model 226 CRT, 128 for Model 237 and 80 for all other devices. If
the TAB position evaluates to a column number less than or equal to the number of characters
printed since the last EOL sequence, then an EOL sequence is printed, followed by (TAB
position — 1) blanks. If the TAB position evaluates to a column number greater than the
number of characters printed since the last EOL, sufficient blanks are printed to move to the
TAB position.

TABXY

The TABXY function provides X-Y character positioning on the CRT. It is ignored if a device
other than the CRT is the PRINTER IS device. TABXY(1,1) specifies the upper left-hand corner
of the CRT. If a negative value is provided for CRT row or CRT column, it is an error. Any
number greater than the screen width for CRT column is treated as the screen width. Any
number greater than 18 for CRT row is treated as 18. (On a Model 237 this is extended to 41
rows). If O is provided for either parameter, the current value of that parameter remains
unchanged.

PRINT With Using

When the computer executes a PRINT USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the print items, the field specifier is acted upon without accessing
the print list. When the field specifer requires characters, it accesses the next item in the print list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
print item. If the image specifiers are exhausted before the print items, they are reused, starting at
the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the PRINT statement are shown in the following table:

Image
Specifier Meaning
K Compact field. Prints a number or string in standard form with no leading or trailing blanks.

-K Same as K.

H Similar to K, except the number is printed using the European number format (comma
radix). (Requires 10)

-H Same as H. (Requires 10)

340 PRINT

Image
Specifier Meaning

S Prints the number's sign (+ or —).

M Prints the number's sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified, the minus sign will occupy a leading digit position. If a sign is
printed, it will ““float” to the left of the left-most digit.

Z Same as D, except that leading zeros are printed.

* Like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

Prints a decimal-point radix indicator.
R Prints a comma radix indicator (European radix). (Requires 10)
E Prints an E, a sign, and a two-digit exponent.
ESZ Prints an E, a sign, and a one-digit exponent.
ESZZ Same as E.
ESZ77 Prints an E, a sign, and a three-digit exponent.

A Prints a string character. Trailing blanks are output if the number of characters specified
is greater than the number available in the corresponding string. If the image specifier is
exhausted before the corresponding string, the remaining characters are ignored.

X Prints a blank.

literal Prints the characters contained in the literal.

B Prints the character represented by one byte of data. This is similar to the CHR$ function.
The number is rounded to an INTEGER and the least-significant byte is sent. If the number
is greater than 32 767, then 255 is used; if the number is less than —32 768, then O is used.

W Prints two characters represented by the two bytes in a 16-bit, two’s-complement integer
word. The corresponding numeric item is rounded to an INTEGER. If it is greater than
32 767. then 32 767 is used; if it is less than —32 768, then —32 768 is used. On an 8-bit
interface, the most-significant byte is sent first. On a 16-bit interface, the two bytes are sent
as one word in a single operation.

Y Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the last print
item.

% Ignored in PRINT images.

+ Changes the automatic EOL sequence that normally follows the last print item to a single
carriage-return. (Requires 10)

- Changes the automatic EOL sequence that normally follows the last print item to a single
line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the PRINTER IS device.

L Sends the current EOL sequence to the PRINTER IS device. The default EOL characters

(@

are CR and LF; see PRINTER IS for information on re-defining the EOL sequence. If the
destination is an I/O path name with the WORD attribute. a pad byte may be sent after the
EOL characters to achieve word alignment.

Sends a form-feed to the PRINTER IS device.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

PRINTALL IS

This statement assigns a logging device for recording operator interaction and troubleshooting

messages.
(CED e FHE - -
Item Description/Default Range
Restrictions

device selector numeric expression, rounded to an integer (see Glossary)

end-of-line characters string expression; 0 thru 8 characters
Default = CR/LF

seconds numeric expression, rounded to the nearest 0.001 thru 32.767
0.001 seconds;
Default = 0

line width numeric expression, rounded to an integer; 1 thru 32 767

Default = infinity (see text)

Example Statements

PRINTALL IS 701
PRINTALL IS Grio

PRINTALL IS 7013EOL CHR$(13) END,WIDTH G5

341

342 PRINTALL IS

Semantics

The printall device must be enabled by the key on the computer. The keyisa
toggle action device. enabling and disabling the printall operation. When the printall mode is

enabled, all items generated by DISP, all operator input followed by the (_RETURN), (ENTER),

. or (EXECUTE) key, and all error messages from the computer are logged on the printall
device. All TRACE activity is logged on the printall device if tracing is enabled.

An asterisk (*) is displayed on the PRINTALL softkey label of models with HP 46020A
keyboards, if print all mode is enabled.

At power-on and SCRATCH A, the printall device is the CRT (device selector=1).

The EOL Attribute (Requires 10)

The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the following
times: after the number of characters specified by line width and after each line of text. Up to
eight characters may be specified as the EOL characters; an error is reported if the string contains
more than eight characters. If END is included in the EOL attribute. an interface-dependent END
indication is sent with the last character of the EOL sequence. [f DELAY isincluded, the computer
delays the specified number of seconds (after sending the last character) before continuing. The
default EOL sequence consists of a carriage-return and a line-feed character with no END
indication and no delay period.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is automatically sent. The EOL characters are not
counted as part of the line width. The default width for the Model 226 CRT is 50, Model 237 with
HP 98781A CRT is 128, and the default for all other devices is 80. Specifying WIDTH OFF sets
the width to infinity. If the default is desired, it must be restored explicitly. If the USING clause is
included in the PRINT statement, the WIDTH attribute is ignored.

Option Required

Keyboard Executable

Programmable
In an IF... THEN...

None
Yes
Yes
Yes

PRINTER IS

This statement specifies the system printing device or file. (If using PRINTER IS with SRM, also
refer to the “SRM” section of this manual.)

(PRINTEH 1S

specifier|

|

device
selector

literal form of file specifier

file
name

protect
code

msus

~(—=

. Range
Item Description/Default Restrictions
device selector numeric expression, rounded to an integer (see Glossary)

end-of-line characters

seconds

line width

file specifier
file name

protect code

msus

string expression;
Default = CR/LF

numeric expression, rounded to the nearest
0.001 seconds:
Default=0

numeric expression, rounded to an integer:
Default = (see text)

string expression
literal

literal; first two non-blank
characters are significant

literal

0 thru 8 characters

0.001 thru 32.767

1 thru 32 767

(see drawing)
any valid file name

“>"" not allowed

(see MASS STORAGE
IS)

343

344 PRINTER IS

Example Statements

PRINTER IS 701

PRINTER IS Grio

PRINTER IS 70135EOL CHR$(13) ENDWIDTH G5
PRINTER IS "Myfile"iWIDTH BO

PRINTER IS "Spooler:REMOTE"

Semantics

The system printing device or file receives all data sent by the PRINT statement and all data sent
by CAT and LIST statements in which the destination is not explicitly specified.

The default printing device is the CRT (select code 1) at power-on and after executing SCRATCH
A

The EOL Attribute (Requires 10)

The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the following
times: after the number of characters specified by line width, after each line of text, and when an
“L" specifier is used in a PRINT USING statement. Up to eight characters may be specified as the
EOL characters: an error is reported if the string contains more than eight characters. If END is
included in the EOL attribute, an interface-dependent END indication is sent with the last
character of the EOL sequence. If DELAY is included, the computer delays the specified number
of seconds (after sending the last character) before continuing. The default EOL sequence

consists of a carriage-return and a line-feed character with no END indication and no delay
period. END and DELAY are ignored for files.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is automatically sent. The EOL characters are not
counted as part of the line width. The default width for the Model 226 CRT is 50, Model 237 with
HP 98781A CRT is 128, and the default for all other devices is 80. Specifying WIDTH OFF sets
the width to infinity. If the default is desired, it must be restored explicitly. If the USING clause is
included the PRINT statement, the WIDTH attribute is ignored. Default WIDTH for files is OFF.

PRINTER IS file
The file must be a BDAT file.

The PRINTER IS file statement positions the file pointer to the beginning of the file.
The file is closed when another PRINTER IS statement is executed and at SCRATCH A.

An end of file error occurs when the end of the file is reached.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement gives a name to a mass storage volume.

(PRINT LABEL }—"Tusiy} >

media
T0 specifier

PRINT LABEL

i Range
Item Description/Default Restrictions
volume label Name to be given to the volume —
media specifier string expression; (see MASS STORAGE
Default = the default mass storage unit IS)

Example Statements

PRINT LABEL "VYers3d" TO ":INTERNAL"
PRINT LABEL VYolume$ TO Msuss

Semantics
The new name overrides any previous name for the volume.

The volume label can be zero to six characters in length consisting of letters and numbers. For
maximum interchange, the characters should be limited to uppercase letters (A-Z) and digits

(0-9) with the first character being a letter.

See the SYSTEM PRIORITY statement.

PRIORITY

345

346

PROTECT

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan [F... THEN. . Yes

This statement specifies the protect code used on PROG, BDAT, and BIN files. (If using
PROTECT with SRM, also refer to the “SRM” section of this manual.)

fil new protect
G e I o © g T

literal form of file specifier:

Tile "
name
old protect A
code .

A Range
Item Description/Default Restrictions
file specifier string expression (see drawing)
new protect code string expression; first two non-blank characters “=" not allowed
are significant
file name literal any valid file name
old protect code literal: first two non-blank characters are signifi- “="" not allowed
cant
msus literal (see MASS
STORAGE IS)

Example Statements

PROTECT NamesPc
PROTECT "Georde<xyr:INTERNAL" s"NEW"

Semantics

A protect code guards against accidental changes to an individual file. Once a file is protected, the
protect code must be included in its file specifier for all operations except LOAD and LOADSUB.

Protect codes are trimmed before they are used. Therefore, leading and trailing blanks are
insignificant. Removing a protect code from a file is accomplished by assigning a protect code that
is the null string or contains all blanks.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

PROUND

This function returns the value of the argument rounded to the specified power-of-ten.

pRounD () O D

Item | Description/Default

Range
Restrictions

argument numeric expression

power of ten

numeric expression, rounded to an integer

Example Statements

Money=PROUND(Result»-2)
PRINT PROUND{(QuantitysDecimal_rlace)

347

348

PRT
Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This INTEGER function returns 701, the default (factory set) device selector for an external
printer.

PRT

Example Statements

PRINTER IS PRT
OUTPUT PRT:A%

PURGE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement deletes a file entry from the directory of the mass storage media (If using PURGE
with SRM, also refer to the ‘“SRM’’ section of this manual.).

GURGQ_.' sp efciilfei er H

literal form of file specifier

file 0
name
protect
code msus

Item Description/Default Rel:t?il::st!ieons
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two non-blank characters are signifi- “>" not allowed

cant
msus literal {(see MASS
STORAGE IS)

Example Statements

PURGE Name$
PURGE "George<PC:»"

Semantics

Once a file is purged, you cannot access the information which was in the file. The records of a
purged file are returned to ‘‘available space.” An open file must be closed before it can be
purged. Any file can be closed by ASSIGN TO * (see ASSIGN).

349

350

RAD

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement selects radians as the unit of measure for expressing angles.

Semantics

All functions which return an angle will return an angle in radians. All operations with param-
eters representing angles will interpret the angle in radians. If no angle mode is specified in a
program, the default is radians (also see DEG).

A subprogram ‘‘inherits’’ the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling

context.

RANDOMIZE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement selects a seed for the RND function.

(RANDOMIZE > -]

i Range Recommended
Item | Description/Default | Restrictions Range
seed numeric expression, rounded to an integer; — 1 thru
Default = pseudorandom 2312

Example Statements

RANDOMIZE
RANDOMIZE Old_seed#*PI

Semantics

The seed actually used by the random number generator depends on the absolute value of the
seed specified in the RANDOMIZE statement.

Absolute Value of Seed I Value Used
less than 1 1
1 thru 2% -2 INT(ABS(seed))
greater than 23! -2 2% -2

The seed is reset to 37 480 660 by power-up, SCRATCH A, SCRATCH, and program prerun.

351

352

RANK

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns the number of dimensions in an array. The value returned is an INTEGER.

array
— "

. Range
Item I Description/Default I Restricst;ions
array name I name of an array | any valid name

Example Statement

IF RANK(A)=2 THEN PRINT "A is a matrix"
R=RANK (Arrav)

353

RATIO
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the ratio of the X hard clip limits to the Y hard clip limits for the current
PLOTTER IS device.

Example Statements

WINDOW 0O s10%RATIO»-10,10
Turn=1/RATIO

354

READ

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement reads values from DATA statements and assigns them to variables.

(D
/-

’

1,

beginning
position

substring
length

ending
position

Item

J
H
L " { (%) \ -
e Range
Description/Default Restrictions

numeric name
string name

subscript

beginning position

ending position

substring length

name of a numeric variable
name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

any valid name
any valid name

—32 767 thru +32 767
(see ‘‘array’’ in Glossary)

1 thru 32 767
(see ‘‘substring”’ in Glossary)

0 thru 32 767
(see ‘‘substring” in Glossary)

0 thru 32 767
(see “‘substring’’ in Glossary)

READ 355

Example Statements

READ Number::String%
READ Arrav (%)
READ Item{1:1)sItem(2+1)sItem(3:1)

Semantics

The numeric items stored in DATA statements are considered strings by the computer, and are
processed with a VAL function to be read into numeric variables in a READ statement. If they
are not of the correct form, error 32 may result. Real DATA items will be rounded into an
INTEGER variable if they are within the INTEGER range (—32 768 thru 32 767). A string
variable may read numeric items, as long as it is dimensioned large enough to contain the
characters.

The first READ statement in a context accesses the first item in the first DATA statement in the
context unless RESTORE has been used to specify a different DATA statement as the starting
point. Successive READ operations access following items, progressing through DATA state-
ments as necessary. Trying to READ past the end of the last DATA statement results in error 36.
The order of accessing DATA statements may be altered by using the RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The array entries
are made in row major order (right most subscript varies most rapidly).

356

READIO

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function reads the contents of the specified hardware register on the specified interface.

Note

Unexpected results may occur with select codes outside the given

range.

interface register §
AEa10)—() O D~

s Range
Item I Description/Default I Restrictions
interface select code | numeric expression, rounded to an integer 1 thru 31

register number numeric expression, rounded to an integer

Example Statements

Uprper_byte=READIO(Grio 1 4)
PRINT "Redister"3I3i"="3iREADID(7,I)

interface dependent

READ LABEL

Option Required MS
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement reads a volume label into a string variable.

(reap LaBeL }—f Sr7ine | | f =
FROM media

specifier

. Range
Item Description/Default Restrictions
string variable string variable which returns the volume name —
media specifier string expression; (see MASS STORAGE
Default = the default mass storage unit IS)

Example Statements

READ LABEL WYolume_name$ FROM ":INTERNAL"
IF Inserted$="Yes" THEN READ LABEL WYolume$ FROM msus$

Semantics

A LIF volume label consists of a maximum of 6 characters, letters, and digits. Other volumes can
return labels up to 16 characters.

357

358

READ LOCATOR

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement samples the locator device, without waiting for a digitizing operation.

o |

string
name

[tem Description/Default Rel:tarlillst;ii)ns
x coordinate name name of a numeric variable any valid name
y coordinate name name of a numeric variable any valid name
string name name of a string variable any valid name

Example Statements

READ LOCATOR X_Pos:¥_PoOS
READ LOCATOR Xs¥:S5tatus$

Semantics

Executing this statement issues a request to the current locator device to return a set of coordin-
ates. The coordinates are sampled immediately, without waiting for a digitizing action on the part
of the user. GRAPHICS INPUT IS is used to establish the current locator device. The returned
coordinates are in the unit-of-measure currently defined for the PLOTTER IS and GRAPHICS
INPUT IS devices. The unit-of-measure may be default units or those defined by either the
WINDOW or SHOW statement. If an INTEGER numeric variable is specified, and the value

returned is out of range, Error 20 is reported.

READ LOCATOR 359

The optional string variable is used to input the device status of the GRAPHICS INPUT IS device.
This status string contains eight bytes, defined as follows.

Byte 1 2 3 4 5 6 7 8

|
Button Number
|

Meaning Digitize y Point s Tracking s
Status Significance On/Off

Byte 1: Button status; This value represents the status of the digitizing button on the locator.
A “0” means the button is not depressed, and a ‘1"’ means the button is depressed. This is
an unprocessed value, and a ‘‘1” does not necessarily represent successful digitization. If the
numeric value represented by this byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4, and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; “0” indicates that the point is outside the P1, P2
limits; ‘1 indicates that the point is outside the viewport, but inside the P1, P2 limits; 2"
indicates that the point is inside the current viewport limits.

Byte 5: Tracking status; <0’ indicates off, ‘1"’ indicates on.

Byte 7 and 8: The number of the buttons which are currently down. To interpret the ASCII number
returned, change the number to its binary form and look at each bit. If the bit is “1”, the corres-
ponding button is down. If the bit is “0”, the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a “‘button 7" is indicated in
the “button number”’ bytes. The number will be exactly “64”, regardless of whether any
actual buttons are being held down at the time. The HP 9111A always returns “00” in bytes
7 and 8.

360

REAL

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... No

This statement reserves storage for floating point variables and arrays. (For information about
REAL as a secondary keyword, see the ALLOCATE, COM, DEF FN, or SUB statements.)

(e
2 W
REAL n unmae nl:ei c | - ::
()
[_/
< - T () — -
©
. Range
Item Description/Default Restrictions

numeric name name of a numeric variable

lower bound integer constant;

Default = OPTION BASE value (0 orl)

upper bound integer constant

Example Statements

REAL XY 2
REAL Arrav(-128:127,15)
REAL A(S1Z) BUFFER

Semantics

any valid name

—32 767 thru +32 767
(see “‘array’’ in Glossary)

—-32 767 thru +32 767
(see “array’ in Glossary)

Each REAL variable or array element requires eight bytes of number storage. The maximum
number of subscripts in an array is six, and no dimension may have more than 32 767 ele-
ments. The total number of elements in an array is limited by memory.

Declaring Buffers

To declare REAL variables to be buffers, each variable’s name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows.

361

RECORDS

See the TRANSFER statement.

RECOVER

See the ON... statements.

362

RECTANGLE

Option Required GRAPHX

Keyboard Executable
Programmable
In an IF.. THEN...

This statement draws a rectangle. It can be filled, edged, or both.

Yes
Yes
Yes

(Cmectansle] wiatn w o
OGS =
Item | Description/Default | Rap ge
Restrictions
width numeric expression —
height numeric expression l —

Example Statements

RECTANGLE 4.6
RECTANGLE 3.:,-2,FILLEDGE

.

' RECTANGLE 363

. Semantics

The rectangle is drawn with dimensions specified as displacements from the current pen position.
Thus, both the width and the height may be negative.

Which corner of the rectangle is at the pen position at the end of the statement depends upon the
signs of the parameters:

Sign | Sign | Corner of Rectangle
of X | of Y | at Pen Position

+ + Lower left
+ - Upper left
- + Lower right
- - Upper right

Shape of Rectangle

A rectangle’s shape is affected by the current viewing transformation. If isotropic units are in
effect, the rectangle will be the expected shape, but if anisotropic units are in effect the rectangle
will be distorted; stretched or compressed along the axes.

RECTANGLE is affected by the PIVOT and PDIR transformations. If a rotation transformation
and anisotropic units are in effect, the rectangle is rotated first, then stretched or compressed
along the unrotated axes.

FILL and EDGE

FILL causes the rectangle to be filled with the current fill color, and EDGE causes the perimeter to
be drawn with the current pen color and line type. If both FILL and EDGE are specified, the
interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified, EDGE is
assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or EDGE
directives on the statement.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT
Note 4: RPLOT and IPLOT are affected by PDIR.

364

REDIM

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement changes the subscript range of previously dimensioned arrays.

(N
, ~ N
O
@EDIM ane ,L ~f(\f »{ poper

O ']bound
lower
bound

. Range
Item Description/Default Restrictions
array name name of an array any valid name
lower bound numeric expression, rounded to an integer; —32 768 thru +32 767
Default = OPTION BASE value (0 or 1) (see “array” in glossary)
upper bound numeric expression, rounded to an integer —32 768 thru + 32 767
(see “array” in glossary)

Example Statements
REDIM Array(5)

REDIM B(3:5,6,-2:2)
REDIM Constants$ (¥ ¥ s2)

Semantics
The following rules must be followed when redimensioning an array:

® The array to be redimensioned must have a currently dimensioned size known to the context
(i.e., it must have been implicitly or explicitly dimensioned, or be currently allocated, or it
must have been passed into the context.)

® You must retain the same number of dimensions as specified in the original dimension
statement.

® The redimensioned array cannot have more elements than the array was originally dimen-
sioned to hold.

® You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will probably be
different. The REDIM is performed left-to-right and if an error occurs, arrays to the left of the array
the error occurs in will be redimensioned while those to the right will not be. If an array appears
more than once in the REDIM, the rightmost dimensions will be in effect after the REDIM.

REM

Option Required None
Keyboard Executable No
Programmable Yes
In an [F... THEN... No

This statement allows comments in a program.

REM > >

. Range
Item | Description/Default Restrictions

literal string constant composed of characters from —

the keyboard, including those generated

with the ANY CHAR key
Example Program Lines
100 REM Prodram Title
190 !
200 IF BIT(Info:2) THEN Branch ! Test overrande bit
Semantics

REM must be the first keyword on a program line. If you want to add comments to a statement,
an exclamation point must be used to mark the beginning of the comment. If the first character
in a program line is an exclamation point, the line is treated like a REM statement and is not
checked for syntax.

365

366

REMOTE

Option Required 10
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN. .. Yes

This statement places HP-IB devices having remote/local capabilities into the remote state.

Item

I1/0 path
name

selector

Description/Default

Range

Restrictions

[/O path name

device selector

name assigned to a device or devices

numeric expression, rounded to an integer

Example Statements

REMOTE 712

REMOTE @Hpib

Semantics

any valid name
(see ASSIGN)

(see Glossary)

If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used, only the
specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is executed,
bus devices are automatically enabled for the remote state and switch to remote when they are

addressed to listen.

The computer must be the system controller to execute this statement, and it must be the active
controller to place individual devices in the remote state.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

REN
. ATN

c ::ttr'gﬁer REN MTA Error
ATN UNL
LAG

Not Active REN Error Error

Controller

Option Required

Keyboard Executable

Programmable
In an [F... THEN...

None
Yes
No
No

REN

This command allows you to renumber all or a portion of the program currently in memory.

REN

starting
value

Item

beginning

Pl
1

line number

beginning
line label

Description/Default

ending
line number

ending
line label

Range
Restrictions

starting value

increment
beginning line number
beginning line label

ending line number

ending line label

integer constant identifying a program line;
Default = 10

integer constant; Default = 10
integer constant identifying program line
name of a program line

integer constant identifying program line;
Default = last program line

name of a program line

1 thru 32 766

1 thru 32 767
1 thru 32 766
any valid name

1 thru 32 766

any valid name

367

368 REN

Example Statements

REN
REN 1000,5
REN 27031 IN ZB0sLabell

Semantics

The program segment to be renumbered is delimited by the beginning line number or label (or
the first line in the program) and the ending line number or label (or the last line in the program).
The first line in the renumbered segment is given the specified starting value, and subsequent line
numbers are separated by the increment. If a renumbered line is referenced by a statement (such
as GOTO or GOSUB), those references will be updated to reflect the new line numbers.
Renumbering a paused program causes it to move to the stopped state.

REN cannot be used to move lines. If renumbering would cause lines to overlap preceding or
following lines, an error occurs and no renumbering takes place.

If the highest line number resulting from the REN command exceeds 32 766, an error message is
displayed and no renumbering takes place. An error occurs if the beginningline is after the ending
line, or if one of line labels specified doesn’t exist.

RENAME

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement changes a file’s name in the mass storage media’s directory. (If using RENAME
with SRM, also refer to the “SRM’’ section of this manual.)

Crenave {202 Je (10 of o i

literal form of file specifier:

file n
name
protect
code msus

. Range

Item Description/Default Restrictions
old file specifier string expression (see drawing)
new file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two non-blank characters are signifi- “>"" not allowed

cant
msus literal (see MASS
STORAGE IS)

Example Statements

RENAME "TEMP<pc>" TO "FINAL"
RENAME Name$&Msus$d TO Temp$

Semantics

The new file name must not duplicate the name of any other file in the directory. A protected file
retains its old protect code, which must be included in the old file specifier. Because you cannot
move a file from one mass storage device to another with RENAME, the msus of the new file
specifier is ignored.

REORDER

See the MAT REORDER statement.

369

370

REPEAT...UNTIL

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN. . No

This construct defines a loop which is repeated until the boolean expression in the UNTIL

statement evaluates to be logically true (evaluates to non-zero).

@NT IL)_.[e XDDOPOEISeSaan n H

Item Description/Default

Range
Restrictions

boolean expression | numeric expression; evaluated as true if non- —

zero and false if zero

program segment any number of contiguous program lines not —

tain properly nested construct(s).

Example Program Segments
530 REPEAT

240 PRINT Factor

350 Factor=Factor*l.,1

360 UNTIL Factor:>10

680 REPEAT
690 INPUT "Enter a positive number"
700 UNTIL Number>=0

containing the beginning or end of a main
program or subprogram, but which may con-

sNumber

REPEAT...UNTIL

Semantics

The REPEAT...UNTIL construct allows program execution dependent on the outcome of a
relational test performed at the end of the loop. Execution starts with the first program line
following the REPEAT statement, and continues to the UNTIL statement where a relational test
is performed. If the test is false a branch is made to the first program line following the REPEAT
statement.

When the relational test is true, program execution continues with the first program line following
the UNTIL statement.

Branching into a REPEAT...UNTIL construct (via a GOTO) results in normal execution up to
the UNTIL statement, where the test is made. Execution will continue as if the construct had
been entered normally.

Nesting Constructs Property

REPEAT...UNTIL constructs may be nested within other constructs provided the inner con-
struct begins and ends before the outer construct can end.

371

372

REQUEST

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement is used by a non-active controller to send a Service Request (SRQ) on an HP-IB
interface.

serial poll
REGUEST

select code

I/0 path
name

Item Description/Default Re?t?incgif)ns
/O path name name assigned to an HP-IB interface any valid name
interface select code numeric expression, rounded to an integer 7 thru 31
serial poll response byte | numeric expression, rounded to an integer 0O thru 255

Example Statements

REQUEST BHp_ibiBit_G+Bit_0
REQUEST IsciResronse

Semantics

Torequest service, the value of the serial poll response must have bit 6 set; this bit asserts the SRQ
line. SRQ will remain set until either the Active Controller performs a Serial Poll or until the
computer executes another REQUEST with bit 6 clear.

Only the interface select code may be specified to receive the Request; if a device selector that
contains address information, or an [/O path assigned to a device selector with address informa-
tion is specified, an error results. An error will also results if the computer is currently the Active
Controller.

373

RES

Option Required None
Keyboard Executable Yes
Programmable No
In an IF... THEN... No

This function returns the result of the last numeric computation which was executed from the
keyboard.

Example Statements

RES
J.5*RES+A

374

RE-SAVE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN. . Yes

This statement creates an ASCII file and copies program lines as strings into that file. (If using
RE-SAVE with SRM, also refer to the “SRM" section of this manual.)

fil
CRE-SAVEHS pe 011 fei er |

] -

literal form of file specifier:

file
name

Item

o]
1
beginning =
l1ine number
ending
line number
ending
line label
"
O -
Range
Description/Default e
ption/ Restrictions

file specifier

beginning line number

beginning line label

ending line number

ending line label
file name

msus

string expression

integer constant identifying program line;
Default = first program line

name of a program line

Default = last program line
name of a program line
literal

literal

integer constant identifying a program line:

(see drawing)

1 thru 32 766

any valid name

1 thru 32 766

any valid name
any valid file name

(see MASS
STORAGE IS)

RE-SAVE 375

Example Statements
RE-SAVE "Nailfile"
RE-SAVE Name#$:1:So0rt

Semantics

An entire program can be saved, or the portion delimited by beginning and (if needed) ending
line labels or line numbers. If the file name already exists, the old file entry is removed from the
directory after the new file is succesfully saved on the mass storage media. Pressing during
a RE-SAVE operation results in the old file being retained. Attempting to RE-SAVE any file that is not
an ASCII file results in an error.

If a specified line label does not exist, error 3 occurs. If a specifed line number does not exist, the
program lines with numbers inside the range specified are saved. If the ending line number is less than
the beginning line number, error 41 occurs.

376

RESET

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement resets an interface or the pointers of either a mass storage file or buffer. (For

information about RESET as a Secondary keyword, see the SUSPEND INTERACTIVE state-
ment. If using RESET with SRM, also refer to the “SRM’ section of this manual.)

1/0 path
name

select code

. Range
Item I Description/Default Restrictions
/O path name name assigned to an interface, mass storage file, any valid name
or buffer
interface select code numeric expression, rounded to an integer 7 thru 31

Example Statements

RESET Hrihb
RESET 20
RESET @Buffer_x

Semantics

A RESET directed to an interface initiates an interface-dependent action; see the “‘Interface
Registers” section for further details. A RESET directed to a mass storage file resets the file
pointer to the beginning of the file. A RESET directed to a buffer resets all registers to their initial
values: the empty and fill pointers are set to 1, and the current-number-of-bytes and all other
registers are reset to zero.

If a TRANSFER is currently being made to or from the specified resource, the computer waits
until the TRANSFER is complete before executing the RESET. If the TRANSFER is not to be
completed, an ABORTIO may be executed to halt the TRANSFER before executing the RESET.
If a busy bulffer is specified in a RESET statement, error 612 results.

Option Required None
Keyboard Executable No
Programmable Yes
In an [F... THEN... Yes

RESTORE

RESTORE specifies which DATA statement will be used by the next READ operation.

(RESTORE)}

. Range
Item Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line; 1 thru 32 766
Default = first DATA statement in context

Example Statements

RESTORE
RESTORE Third_arrav

Semantics

If a line is specified which does not contain a DATA statement, the computer uses the first
DATA statement after the specified line. RESTORE can only refer to lines within the current

context. An error results if the specified line does not exist.

377

378

RE-STORE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement creates a file and stores the program or typing-aid key definitions into it. (If using
RE-STORE with SRM, also refer to the “SRM”’ section of this manual.)

(RE—STORE> {spggﬁier -

KEY KBD

literal form of fiie specaifier

file n
name
protect r
coge msus

RE-STORE

Item Description/Default Regérlir::st}i?)ns
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two non-blank characters are signifi- “>" not allowed

cant
msus literal {see MASS
STORAGE IS)

Example Statements

RE-STORE Filename$&Msus$
RE-STORE KEY "KEYg§"

Semantics

If the file already exists, the old file is removed from the directory after the new file is successfully
saved on the mass storage media. If an old file does not exist, a new one is created as if this were
the STORE statement. Pressing during a RE-STORE operation causes the old file to be
retained. If the old file had a protect code, the same protect code must be used in the RE-STORE
operation. Attempting to RE-STORE a file which is the wrong type results in an error. (RE-
STORE creates a PROG file, and RE-STORE KEY creates a BDAT file.)

379

380

RESUME INTERACTIVE
Option Required None
Keyboard Executable Yes'
Programmable Yes
Inan [F... THEN... Yes

This statement enables the (EXECUTE). (ENTER). (_RETURN). (PAUSE). (STOP). ('STEP). (CLR 10). (BREAK)
and keys after a SUSPEND INTERACTIVE statement.

(Resume INTERACTIVE)—

Example Statements

RESUME INTERACTIVE
IF Kbkd_flag THEN RESUME INTERACTIVE

1 This statement is executable from the keyboard. but onlywhile SUSPEND INTERACTIVE is not in effect.

381

RETURN

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement returns program execution to the line following the invoking GOSUB. The
keyword RETURN is also used in user-defined functions (see DEF FN).

382

REV$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns a string formed by reversing the sequence of characters in the specified
string.

string
revs }—~(O) O

Example Statements

Reverse$=REV$("pPalindrome")
Last_blank=LEN(Sentence$)-POS(REV$(Sentences) »" ")

Semantics

The REVS$ function is useful when searching for the last occurrence of an item within a string.

RND

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns a pseudo-random number greater than 0 and less than 1.

Example Statements

Percent=RND*100
IF RND<.5 THEN Casel

Semantics
The random number returned is based on a seed set to 37 480 660 at power-on, SCRATCH,
SCRATCH A, or program prerun. Each succeeding use of RND returns a random number

which uses the previous random number as a seed. The seed can be modified with the
RANDOMIZE statement.

383

384

ROTATE

Option Required
Keyboard Executable
Programmable

In an IF... THEN...

None
Yes
Yes
Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified. The shift is performed

with wraparound.

bit position
ROTATE = () CO—siseiaeinent =)~

. Range Recommended
Item Description/Default Restrictions Range
argument numeric expression, rounded to an integer —32 768 thru —
+32 767
bit position numeric expression, rounded to an integer - 32 768 thru — 15 thru
displacement +32 767 +15

Example Statements

New_word=ROTATE(Old_word2)
Q=ROTATE(Q,Places)

Semantics

The argument is converted into a 16-bit, two’s-complement form. If the bit position displace-
ment is positive, the rotation is towards the least-significant bit. If the bit position displacement
is negative, the rotation is towards the most-significant bit. The rotation is performed without

changing the value of any variable in the argument.

RPLOT

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement moves the pen from the current pen position to the point specified by adding the x
and y displacements to the local origin. It can be used to move with or without drawing a line
depending on the pen control parameter.

X
displacement

y
displacement

pen
control

.. Range
Item Description/Default Restrictions

x displacement numeric expression in current units —

y displacement numeric expression in current units —

pen control numeric expression, rounded to an integer; —32 768 thru +32 767
Default = 1

array name name of two-dimensional, two-column or three- any valid name
column numeric array. Requires GRAPHX

Example Statements

RPLOT Rel_x::Rel_vsPen_action
RPLOT 5,12
RPLOT Share(*),FILL +EDGE

Semantics

This statement moves the pen to the specified X and Y coordinates relative to the local coordinate
origin. Both moves and draws may be generated, depending on the pen control parameter. Lines
are drawn using the current pen color and line type.

The local coordinate origin is the logical pen position at the completion of one of the following
statements. The local coordinate origin is not changed by the RPLOT statement.

AXES DRAW FRAME GINIT GRID IDRAW IMOVE
IPLOT LABEL MOVE PLOT POLYGON POLYLINE RECTANGLE
SYMBOL

385

386 RPLOT

The line is clipped at the current clipping boundary. RPLOT is affected by the PIVOT and PDIR
transformations. If none of the line is inside the current clip limits, the pen is not moved, but the

logical pen position is updated.

Non-Array Parameters

The specified X and Y displacements information is interpreted according to the current unit-of-

measure. Lines are drawn using the current pen color and line type.

If none of the line is inside the current clip limits, the pen is not moved, but the logical pen position

is updated.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1. The starting point for labels drawn after lines or axes is affected by scaling

Note 2 The starting point for labels drawn after other labels is affected by LDIR

Note 3° The starting point for labels drawn after lines or axes is affected by PIVOT

Note 4. RPLOT and IPLOT are affected by PDIR.

The optional pen control parameter specifies the following plotting actions; the default value is

+ 1 (down after move).

Pen Control Parameter

Pen Control I

Resultant Action

—Even
—0dd
+Even
+0dd

The above table is summed up by: even is up, odd is down, positive is after pen motion,

negative is before pen motion.

Array Parameters

When using the RPLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be + 1: pen down

after move.

Pen up before move

Pen down before move

Pen up after move
Pen down after move

RPLOT 387

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the RPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen color.
If polygon mode is entered from within the array, and the FILL/EDGE directive for that series
of polygons differs from the FILL/EDGE directive on the RPLOT statement itself, the directive
in the array replaces the directive on the statement. In other words, if a “‘start polygon mode”’
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the RPLOT statement, FILL occurs first. If neither
one is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be
edged, regardless of the directives on the statement.

When using an RPLOT statement with an array, the following list of operation selectors ap-
plies. An operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op-
erations. Polygons may be defined, edged (using the current pen), filled (using the current fill
color), pen and line type may be selected, and so forth.

Operation
Column 1 Column 2 Selector | Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value
ignored ignored >15 Ignored

388 RPLOT

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array RPLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu-
ated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color

Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessariy immediately), is a row whose operation selector in col-
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities (which range from O thru 1) for red, green, and
blue in the variables Rk, G, and B, respectively, the value for the first column in the array could
be defined thus:

Array (Rows1)=SHIFT(1G*(1-B)s-10)+5HIFT(16#(1-G),»-3)+16*(1-R)

If there is a pen color in the color map similar to that which you request here, that non-
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

RPLOT

Polygons

A six, ten, or eleven in the third column of the array begins a “‘polygon mode”. If the opera-
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11, the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify-
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec-
tors 6, 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the RPLOT statement, so one probably would not have more than
one operation selector 12 in an array to RPLOT, since the last FRAME will overwrite all the
previous ones.

Premature Termination

Operation selector 8 causes the RPLOT statement to be terminated. The RPLOT statement
will successfully terminate if the actual end of the array has been reached, so use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than —2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

389

390

RPT$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the string repeated a given number of times.

repeat
D e O o Tl S O S e ©

Range

Item | Description/Default | Restrictions

argument

string expression \ —

repeat factor numeric expression, rounded to an integer 0 thru 32 767

Example Statements

PRINT RPT&("*",80)
Center$=RPT$(" "s(Right-Left-Lendth)/2)

Semantics

The value of the numeric expression is rounded to an integer. If the numeric expression evaluates
to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or if the string
created by RPT$ contains more than 32 767 characters.

RSUM

See the MAT statement.

RUN

Option Required None
Keyboard Executable Yes
Programmable No
In an IF... THEN... No

This command starts program execution at a specified line.

AUN -
Item Description/Default Range
Restrictions
line number integer constant identifying a program line; 1 thru 32 766
Default = first program line
line label name of a program line any valid name

Example Statements

RUN 10
RUN Part?2

Semantics

Pressing the key is the same as executing RUN with no label or line number. RUN is
executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

® Reserving memory space for variables specified in COM statements (both labeled and
blank). See COM for a description of when COM areas are initialized.

e Reserving memory space for variables specified by DIM, REAL, INTEGER, or implied in the
main program segment. This does not include variables used with ALLOCATE, which is
done at run-time. Numeric variables are initialized to O; string variables are initialized to the
null string.

e Checking for syntax errors which require more than one program line to detect. Included
in this are errors such as incorrect array references, and mismatched parameter or COM

lists.

If an error is detected during prerun phase, prerun halts and an error message is displayed on
the CRT.

After successful completion of prerun initialization, program execution begins with either the
lowest numbered program line or the line specified in the RUN command. If the line number
specified does not exist in the main program, execution begins at the next higher-numbered
line. An error results if there is no higher-numbered line available within the main program, or if
the specified line label cannot be found in the main program.

391

392

SAVE Option Required None

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement creates an ASCII file and copies program lines as strings into that file. (If using
SAVE with SRM, also refer to the ““SRM’ section of this manual.)

fil
CSAVEH sDecli fei er } > -

beginning
line number

ending
line number

ending
line label

literal form of file specifier:

name *1_j

SAVE
Item Description/Default Range
Restrictions
file specifier string expression (see drawing)
beginning line number integer constant identifying a program line; 1 thru 32 766
Default = first program line
beginning line label name of a program line any valid name
ending line number integer constant identifying a program line; 1 thru 32 766
Default = last program line
ending line label name of a program line any valid name
file name literal any valid file name
msus literal (see MASS
STORAGE IS)

Example Statements

SAVE "WHALES"
SAVE "TEMP"s1s80rt

Semantics

An entire program can be saved, or any portion delimited by the beginning and (if needed)
ending line numbers or labels. This statement is for creating new files. Attempting to SAVE a file
name that already exists causes error 54. If you need to replace an old file, see RE-SAVE.

If a specified line label does not exist, error 3 occurs. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs. If no program lines are in the specified
range, error 46 occurs.

393

394

SC

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the interface select code associated with an I/O path name.

I/0 path
€30 O

Item | Description/Default I Re?ti:ilgtgiims
/O path name | name of a currently assigned /O path | any valid name

Example Statements

Isc=8C(@Device)
Drive_isc=8C(@File)

Semantics

If the [/O path name is assigned to a device selector (or selectors) with primary and/or secondary
addressing, only the interface select code is returned. If the specified [/O path name is assigned to
a mass storage file, the interface select code of the drive is returned. If the specified I/O path name
is assigned to a buffer, a zero is returned.

If the I/O path name is not currently assigned to a resource, an error is reported.

SCRATCH

Option Required None
Keyboard Executable Yes
Programmable No
In an IF... THEN... No

This command erases all or selected portions of memory.

(SCRATCH)}

Item | Description/Default | Re?t?ir::st;ieons
key number I integer constant | 0 thru 23

Example Statements

SCRATCH
SCRATCH A
SCRATCH KEY
SCRATCH KEY 14

Semantics
SCRATCH clears the BASIC program and all variables notin COM. Key definitions are left intact.

SCRATCH C clears all variables, including those in COM. The program and keys are left intact.

To scratch a key, type SCRATCH KEY, followed by the key number, and press (_EXECUTE), (ENTER)
or . Also, pressing a softkey after typing SCRATCH will cause SCRATCH KEY, followed by
the key number, to be displayed. When a key is specified, the definition for that key only is
cleared. When an individual key is not specified, all key definitions are cleared. In either case, the
program and all variables are left intact.

SCRATCH A clears the BASIC program memory, all the key definitions, and all variables
(including those in COM). Most internal parameters in the computer are reset by this command.
The clock is not reset and the recall buffer is not cleared. See the Master Reset Table in the
“Useful Tables’ section in the back of this manual for details.

395

396 SCRATCH

SCRATCH BIN

SCRATCH BIN causes an extended SCRATCH A. It resets the computer to its power up state. All
programs, variables, and BINs are deleted from memory. The BIN which contains the CRT driver
for the current CRT is not deleted. Note that SCRATCH BIN will not remove any binaries that
reside in ROM.

SEC

See the SEND statement.

Option Required
Keyboard Executable
Programmable

In an [F.. THEN..

PDEV

Yes
No
No

This command protects program lines so that they cannot be listed.

(' SECURE }
beginning
'I line number}

Item

Pl |
1

ending
line number

Description/Default

SECURE

Range
Restrictions

beginning line number

ending line number

integer constant;
Default = first line in program

integer constant;
Default = beginning line number if specified, or
last line in program

Example Statements

SECURE
SECURE 45
SECURE 1.:100

Semantics

If no lines are specified, the entire program is secured. If one line number is specified, only that
line is secured. If two lines are specified, all lines between and including those lines are secured.

Program lines which are secure are listed as an *. Only the line number is listed.

397

398

SELECT...CASE

Option Required
Keyboard Executable
Programmable

Inan IF... THEN...

This construct provides conditional execution of one of several program segments.

CSELECTH expression I——>|

@

(-
. match
o item

beginning
* I match item | '(T0) »

segment
CASE ELSE

program
segment

END SELECT

B !

Iy

Description/Default

Range
Restrictions

None
No
Yes
No

expression

match item

program segment

a numeric or string expression

a numeric or string expression; must be
same type as the SELECT expression.

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

SELECT...CASE 399

Example Program Segments
B50 SELECT Expression

GBO CASE <0

670 PRINT "Nedative number"
B8O CASE ELSE

690 PRINT "Non-negative number”

700 END SELECT

730 SELECT Expression$

760 CAaSE "A" TO "2°

770 PRINT "Uprercase alrhabetic”
78(:) CASE 1" : 1] ,ll ;ll ,ll 'Il ’ll R 1

790 PRINT "Punctuation"

800 END SELECT

Semantics

SELECT...END SELECT is similar to the IF... THEN...ELSE...END IF construct, but allows
several conditional program segments to be defined; however, only one segment will be
executed each time the construct is entered. Each segment starts after a CASE or CASE ELSE
statement and ends when the next program line is a CASE, CASE ELSE, or END SELECT
statement.

The SELECT statement specifies an expression, whose value is compared to the list of values
found in each CASE statement. When a match is found, the corresponding program segment is
executed. The remaining segments are skipped and execution continues with the first program
line following the END SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and must agree in
type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when the
selected expression’s value fails to match any CASE statement’s list.

Branching into a SELECT...END SELECT construct (via GOTO) results in normal execution
until a CASE or CASE ELSE statement is encountered. Execution then branches to the first
program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred in the
corresponding SELECT statement.

Nesting Constructs Properly

SELECT...END SELECT constructs may be nested, provided inner construct begins and ends
before the outer construct can end.

400

SEND

This statement sends messages to an HP-IB.

I/0 path
name

select code

Option Required
Keyboard Executable
Programmable

Inan [F... THEN. .

ASCII space
(space bar)

CMD

?

10
Yes
Yes
Yes

numeric
expression

string
expression

SEC

(N
\J/ 7
numEF?E—_1 P

expression

string
expression

primary |

address |
:’

primary [

address |

S

secondaryl

address |

UNL

UNT

MLA

MTA

Y

SEND 401

. Range
Item Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 7 thru 31
/O path name name assigned to an interface select code any valid name
(see ASSIGN)
primary address numeric expression, rounded to an integer 0 thru 31
secondary address numeric expression, rounded to an integer 0 thru 31

Example Statements

SEND 73UNL MTA LISTEN 1 DATA "HELLO" END
SEND @HepibiUNL MLA TALK Device CMD Z24+1Z8

Semantics

CMD

The expressions following a CMD are sent with ATN true. The ASCII characters representing
the evaluated string expression are sent to the HP-IB. Numeric expressions are rounded to an
integer MOD 256. The resulting byte is sent to the HP-IB. CMD with no items sets ATN true.

DATA

The expressions following DATA are sent with ATN false. The ASCII characters representing
the evaluated string expression are sent. Numeric expressions are rounded to an integer MOD
256. The resulting byte is sent to the HP-IB. If END is added to the data list, EOl is set true
before sending the last byte. DATA with no items sets ATN false without waiting to be addres-
sed as a talker.

If the computer is active controller, and addressed as a talker, the data is sent immediately. If
the computer is not active controller, it waits until it is addressed to talk before sending the data.

TALK
TALK sets ATN true and sends the specified talk address. Only one primary address is allowed

for a single talker. An extended talker may be addressed by using SEC secondary address after
TALK. A TALK address of 31 is equivalent to UNT (untalk).

UNT
UNT sets ATN true and sends the untalk command. (There is no automatic untalk.) A TALK
address of 31 is equivalent to UNT.

LISTEN
LISTEN sets ATN true, sends one or more primary addresses, and addresses those devices to
listen. A LISTEN address of 31 is equivalent to UNL (unlisten).

UNL
UNL set ATN true and sends the unlisten command. (There is no automatic unlisten.) A
LISTEN address of 31 is equivalent to UNL.

402 SEND

SEC

SEC sets ATN true and sends one or more secondary addresses (commands).

MTA

MTA sets ATN true and sends the interface’s talk address. It is equivalent to performing a status
sequence on the interface and then using the returned talk address with a SEND.. TALK se-
quence.

MLA

MLA sets ATN true and sends the interface’s listen address. It is equivalent to performing a
status sequence on the interface and then using the returned listen address with a SEND..LIS-
TEN sequence.

Summary
The computer must be the active controller to execute SEND with CMD, TALK, UNT, LISTEN,
UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA is sent when the
computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the messages, and the
secondary keywords required to send the messages. Any numeric values are decimal.

SEND

Mnemonic Description Secondary Keyword and Value

DAB Data Byte DATA 0 thru DATA 255

DCL Device Clear CMD 20 or CMD 148

EQOI End or Identify DATA (data) END (sends EOI with ATN false,
which is the END message: EOI with ATN true is
the Identify message. sent automatically with the
PPOLL function)

GET Group Execute Trigger CMD 8 or CMD 136

GTL Go To Local CMD 1 or CMD 129

IFC Interface Clear Not possible with SEND. An ABORT statement
must be used.

LAG Listen Address Group LISTEN O thru LISTEN 31 or CMD 32 thru CMD
63

LLO Local Lockout CMD 17

MLA My Listen Address MLA

MTA My Talk Address MTA

PPC Parallel Poll Configure CMD 5 or CMD 133

PPD Parallel Poll Disable PPC (CMD 5 or CMD 133). followed by CMD
112. or CMD 240. or SEC 16.

PPE Parallel Poll Enable PPC (CMD 5 or CMD 133). followed by CMD 96
thru CMD 111, or CMD 224 thru CMD 239. or
SEC 0 thru SEC 15. SEC 0 allows a mask to be
specified by a numeric value.

PPU Parallel Poll Unconfigure CMD 21 or CMD 149

PPOLL Parallel Poll Not possible with SEND. PPOLL function must

be used.

REN Remote Enable Not possible with SEND. REMOTE statement
must be used.

SDC Selected Device Clear CMD 4 or CMD 132

SPD Serial Poll Disable CMD 25 or CMD 153

SPE Serial Poll Enable CMD 24 or CMD 152

TAD Talk Address TALK O thru TALK 31. or CMD 64 thru CMD 95,
or CMD 192 thru CMD 223.

TCT Take Control CMD 9 or CMD 137

UNL Unlisten UNL. or LISTEN 31, or CMD 63, or CMD 191.

UNT Untalk UNT. or TALK 31, or CMD 95, or CMD 223.

403

404

SET ECHO

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement sets an echo to the specified location on the current PLOTTER IS device.

CSET ECH[D———lx cc Wr‘d}mate

. Range
Item Description/Default ngs
Restrictions
X coordinate numeric expression in current units —
y coordinate numeric expression in current units —

Example Statements
SET ECHO Min.¥in
SET ECHO 100w, 10000

Semantics
If the current PLOTTER IS device is a CRT. a 9-by-9-dot cross-hair is displayed at the specified

coordinates if they are within the hard clip limits: the soft clip limits are ignored. No echo is
displayed if the coordinates are outside the hard clip limits.

If the current PLOTTER IS device is an HPGL plotter, the pen is raised and moved to the
specified coordinates if they are within the current clip limits. If the pen is inside the clip limits and
the new echo position is not. it moves towards the new echo position but stops at the clip
boundary. If the pen is outside the clip limits and the new echo position is outside the clip limits,
the pen moves along the nearest clip boundary.

SET ECHO is frequently used with the READ LOCATOR statement.

405

SET LOCATOR

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement specifies a new position for the locator of the current graphics input device.

Gt & e S0

" Range
Item Description/Default Restrictions
x coordinate numeric expression specifying the x coordinate of range of REAL
the locator’s new position in current units
y coordinate numeric expression specifying the y coordinate of range of REAL
the locator’s new position in current units

Example Statements

SET LOCATOR 12,95
SET LOCATOR X_cors»¥.cor

Semantics
If any of the coordinates are outside the device’s limits, they are truncated to the nearest
boundary.

In order to change the X and Y coordinates of the locator, the graphics input device must have a
programmable locator position, (e.g. graphics input is from the keyboard and other relative
locators).

406

(ser PEN)|

SET PEN

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an [F.. THEN Yes

This statement defines the color for one or more entries in the color map.

pen
selector

Item

HSL array (%) N
| ()

name
O~ 0O
RGB array (*)‘\, J
name J

INTENSITY

Range

Description/Default Restrictions

pen selector
hue
saturation
luminosity

HSL array name

red
green
blue

RGB array name

0 thru 32 767

numeric expression, rounded to an integer

numeric expression 0 thru 1
numeric expression Othrul
numeric expression 0 thru 1l

name of a two-dimensional, three-column REAL any valid name

array
numeric expression 0thrul
numeric expression Othrul
numeric expression 0 thrul

name of a two-dimensional, three-column REAL any valid name

array

Example Statements

SET PEN 3 COLOR
SET PEN Pen_number
SET PEN O INTENGITY

Semantics

This statement defines the color for one or more entries in the color map. Either the HSL
(hue/saturation/luminosity) color model or the RGB (red/green/blue) color model may be used.
This statement is ignored for non-color mapped devices and color mapped devices in non-color

map mode.

HuesSaturationsbLumivnosity

INTENSITY Color_map_arrav (%)
4/15,4/154+4/158

SET PEN 407

For both SET PEN COLOR and SET PEN INTENSITY, the pen selector specifies the first color
map entry to be defined. If individual RGB or HSL values are given, that entry in the color map is
the only one defined. If an array is specified, the color map is redefined, starting at the specified
pen, and continuing until either the highest-numbered entry in the color map is redefined or the
source array is exhausted.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered color)
results in a much more accurate representation of the desired color than specifying the color with
an AREA statement. Compare the five color plates shown in this entry with the corresponding
plates in the AREA statement.

Note
The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

The five following color plates are multiple exposures.

SET PEN COLOR

The hue value specifies the color. The hue ranges from zero to one, in a circular manner, with a
value of zero resulting in the same hue as a value of one. The hue, as it goes from zero to one,
proceeds through red, orange, yellow, green, cyan, blue, magenta, and back to red.

The saturation value, classically defined, is the inverse of the amount of white added to a hue.
What this means is that saturation specifies the amount of hue to be mixed with white. As
saturation goes from zero to one, there is 0% to 100% of pure hue added to white. Thus, a
saturation of zero results in a gray, dependent only upon the luminosity; hue makes no differ-
ence.

The luminosity value specifies the brightness per unit area of the color. A luminosity of zero
results in black, regardless of hue or saturation; if there is no color, it makes no difference which
color it is that is not there.

408 SET PEN

The following color plate shows the changes brought about by varying one of HSL parameters at
a time. The bottom bar shows that when saturation (the amount of color) is zero, hue makes no
difference, and varying luminosity results in a gray scale.

Hue/Gaturation/l uminosity

Ttrmcty o Fanal Culor

Saturat:ran

The following color wheel represents the fully saturated, fully luminous colors selected as the hue
value goes from 0 through 1. Any value between zero and one, inclusive, can be chosen to select
color, but the resolution (the amount the value can change before the color on the screen
changes) depends on the value of hue. as well as the other two parameters.

HSL Color Wheel

Tl

SET PEN 409

The next color plate shows the effect that varying saturation and luminosity have on hue. Each of
the small color wheels is a miniature version of the large one above, except it has fewer colors.

Effects of Saturation and Luminosity on Color

SET PEN INTENSITY
Thered, green, and blue values specify the intensities of the red, green, and blue colors displayed
on the screen.

The following color plate demonstrate the effect of varying the intensity of one color component
while the other two remain the constant.

RGB Addition: One Color at a Time

410 SET PEN

The next plate shows combinations of red, green and blue. The values are represented in
fifteenths: O fifteenths, 5 fifteenths, 10 fifteenths, and 15 fifteenths — every fifth value. Fifteenths

are the units. Thus, zero fifteenths through fifteen fifteenths made a total of sixteen levels. The
values for each color component are represented in that color.

RGB Color Addition Charts

SET TIME

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement resets the time-of-day given by the real-time clock.

(seT TIME)—+{ scconas |+

s Range
Item | Description/Default | Restrictions

seconds numeric expression, rounded to the nearest 0 thru 86 399.99

hundredth

Example Statements

SET TIME ©
SET TIME Hours*3B00+Minutes*B0

Semantics

SET TIME changes only the time within the current day, not the date. The new clock setting is
equivalent to (TIMEDATE DIV 86 400) x 86 400 plus the specified setting.

411

412

SET TIMEDATE

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement resets the absolute seconds (time and day) given by the real-time clock.

(SET TIMEDATE}—+{ seconas |+

L. Range
Item \ Description/Default \ Restrictions
seconds numeric expression, rounded to the nearest 2.086 629 12 E + 11 thru

hundredth 2.143 252 2239999 E+11

Example Statements

SET TIMEDATE TIMEDATE+8G400
SET TIMEDATE Strande_number

Semantics

The volatile clock is set to 2.086 629 12 E + 11 (midnight March 1. 1900) at power-on. If there is
a battery-backed (non-volatile) clock, then the volatile clock is synchronized with it at power-up.
If the computer is on an SRM system (and has no battery-backed clock), then the volatile clock is
synchronized with the SRM clock when the SRM and DCOMM binaries are loaded. The clock
values represent Julian time, expressed in seconds.

413

SGN

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This function returns 1 if the argument is positive, O if it equals zero, and — 1 if it is negative.

numeric
expression

Example Statements

Root=8GN(X)*5QR(ABS (X))
Z=2%PI*#SCGN(Y)

414

SHIFT

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN. . Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified, without wraparound.

CHT0

~ £ bit position -
argumen displacement

. Range Recommended
Item Description/Default Restrictions Range
argument numeric expression, rounded to an integer —~ 32 768 thru —
+32 767
bit position numeric expression, rounded to an integer —32 768 thru — 15 thru
displacement +32 767 +15

Example Statements

New_word=SHIFT(0ld_word,»-2)
MasK=8SHIFT(1+Position)

Semantics

If the bit position displacement is positive, the shift is towards the least-significant bit. If the bit
position displacement is negative, the shift is towards the most-significant bit. Bits shifted out
are lost. Bits shifted in are zeros. The SHIFT operation is performed without changing the value
of any variable in the argument.

SHOW

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement is used to define an isotropic current unit-of-measure for graphics operations.

G~ O OO

Item Description/Default Re?t?i';st;ieons
left numeric expression —
right numeric expression #* left
bottom numeric expression —
top numeric expression # bottom

Example Statements
SHOW -5+5:0,100
SHOW LeftsRightsBottom:Top

Semantics

SHOW defines the values which must be displayed within the hard clip boundaries, or the
boundaries defined by the VIEWPORT statement. SHOW creates isotropic units (units the
same in X and Y). The direction of an axis may be reversed by specifying the left greater than
the right or the bottom greater than the top. (Also see WINDOW.)

415

416

SIGNAL

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement generates a software interrupt.

(stenaL) 212020 |

Item Description/Default Range
p Restrictions
signal selector | numeric expression, rounded to an integer I 0 thru 15

Example Statements

SIGNAL 3
SIGNAL Bailout

Semantics

If an ON SIGNAL statement for the specified signal selector exists, and all the other conditions for
an event-initiated branch are fulfilled, the branch defined in the ON SIGNAL statement is taken.
[f no ON SIGNAL exists for the specified signal selector, the SIGNAL statement causes no action.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

SIN

This function returns the sine of the angle represented by the argument.

O~z

.. Range
Item Description/Default Restrictions
argument numeric expression in current units of angle absolute value less than:

Example Statements
Sine=SIN(Andle)

PRINT "Sine of"iThetai"="3iS5IN(Theta)

1.708 312 781 2 E+ 10 deg.
or
2.981 568 26 E + 8 rad.

417

418

SIZE

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the size (number of elements) of a dimension of an array. This INTEGER
value represents the difference between the upper bound and the lower bound, plus 1.

E--O{E=H——- O~~~
®

. Range
Item | Description/Default Restrictions
array name name of an array any valid name
dimension numeric expression, rounded to an integer 1 thru 6;

Example Statements

Urrperbound(2)=BASE(A»2)+5IZE(A2)-1
Number_words=SIZE(Words$ 1)

SORT

See the MAT SORT statement.

SPANISH

See the LEXICAL ORDER IS statement.

< the RANK of the array

419

SPOLL

Option Required 10
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This function returns an integer containing the serial poll response from the addressed device.

I/0 path
name
.'

selector

N Range
Item Description/Default Restrictions
I/O path name name assigned to a device any valid name
(see ASSIGN)
device selector numeric expression, rounded to an integer must include a primary
address (see Glossary)

Example Statements

Stat=5POLL(707)
IF SPOLL(@Device) THEN Respond

Semantics

The computer must be the active controller to execute this function. Multiple listeners are not
allowed. One secondary address may be specified to get status from an extended talker. Refer
to the documentation provided with the device being polled for information concerning the
device’s status byte. A

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active SPE SPE
Controller Error ATN Error ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controller Error

420

SQR

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This function returns the square root of the argument.

YO0 ®
Item Description/Default Range
P Restrictions
argument | numeric expression | =0

Example Statements

Amps=50R (KWatts/Ohms)
PRINT "Sauare root of"iX{i"="38QR (X

STANDARD

See the LEXICAL ORDER IS statement.

STATUS

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement returns the contents of interface or I/O path name status registers.(If using
STATUS with SRM, also refer to the “SRM” section of this manual.)

name

STATUS

register
number

interface
select code

L Range
Item Description/Default Restrictions
/O path name name assigned to a device, devices, mass storage any valid name
file, or buffer (see ASSIGN)
interface select code numeric expression, rounded to an integer 1 thru 40
register number numeric expression, rounded to an integer: interface dependent
Default = 0
numeric name name of a numeric variable any valid name

Example Statements

STATUS 1iXross¥Pos
5TATUS BFilesSiRecord

Semantics

The value of the beginning register number is copied into the first variable, the next register
value into the second variable, and so on. The information is read until the variables in the list
are exhausted; there is no wraparound to the first register. An attempt to read a nonexistent
register generates an error.

The register meanings depend on the specified interface or on the resource to which the I/O path
name is currently assigned. Register 0 of /O path names can be interrogated with STATUS even
if the I/O path name is currently invalid (i.e., unassigned to a resource). Note that the Status
registers of an /O path are different from the Status registers of an interface. All Status and
Control registers are summarized in the “‘Interface Registers’’ section at the back of the book.

421

422

STEP

See the FOR...NEXT construct.

STOP

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement terminates execution of the program.

Semantics

Once a program is stopped, it cannot be resumed by CONTINUE. RUN must be executed to
restart the program. PAUSE should be used if you intend to continue execution of the program.

A program can have multiple STOP statements. Encountering an END statement or pressing the
(stop) ((sHiFT) (STOP) on the HP 46020A keyboards) key has the same effect as executing STOP.
After a STOP, variables that existed in the main context are available from the keyboard.

423

424

STORE

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan [F. THEN.. Yes

This statement creates a file and stores the program or typing-aid key definitions into it. (If using
STORE with SRM, also refer to the “SRM” section of this manual.)

fil
(sTORE } ™ pecstaer

KEY

KBD

literal form of fi.e specifier:

file "
name
protect .
OZETH+E

Item Description/Default Re?t?irégii)ns
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal: first two non-blank characters are signifi- * " not allowed

cant
msus literal (see MASS
STORAGE IS)

Example Statements

STORE Filename$&Msuss
STORE KEY “KEvg"

STORE

Semantics

In all STORE statements, an error will occur if the storage media cannot be found, the media or
directory is full, or the file specified already exists. Also, if a protect code is specified, it will be
applied to the new file. To update a file which already exists, see RE-STORE.

STORE
The STORE statement creates a PROG file and stores an internal form of the program into that
file.

STORE KEY

STORE KEY creates a file of type BDAT, and stores the current typing-aid key definitions (not
ON KEY definitions) into it. These definitions may subsequently be reloaded into the computer
with the LOAD KEY statement.

For each defined key, an integer and a string are sent to the file. The integer is the key number,
and the string is the key definition. The string consists of a four-byte length followed by the key
definition, padded to an even length. The data is written with FORMAT OFF (see the OUTPUT
statement). Keys with no definition are not written to the file.

425

426 STORE

427

STORE SYSTEM

Option Required None
Keyboard Executable Yes
Programmable No
Inan [F... THEN... No

The command stores the entire BASIC operating system currently in memory including any BINs
that are loaded. (If using STORE SYSTEM with SRM, also refer to the “SRM’’ section of this
manual.)

(S1ore sysTEM}—{,, e e —

literal form of file specifier:

file ' m
name
O

Range

Itemn Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
msus literal (see MASS

STORAGE IS)

Example Statements

STORE SYSTEM "SYSTEM_B1:INTERNAL"
STORE SYSTEM "BACKUPL™

Semantics
If the file name already exists, an error occurs.

The BASIC system and any BINs in memory are stored in the file. If the file name begins with
SYSTEM_, the Boot ROM can load it at power up or SYSBOOT.

Note that if you did a SCRATCH BIN to remove the CRT driver you did not need, and then stored
the system, when you reboot, the CRT driver for the other display is not available. If the CRT
needs the other driver, you cannot use the display. Execute a LOAD BIN command to load the
needed driver.

STORE SYSTEM cannot be used with ROM BASIC systems.

428

SUB

Option Required None
Keyboard Executable No
Programmable Yes
Inan IF... THEN... No

This is the first statement in a SUB subprogram and can specify the subprogram’s formal
parameters.

) I subprogram |]
CSUB name | h
parameter
list
program
segment
SUBEND
parameter list:
-
{ [T numeric | W _
TL_nome | ' -

Y

required INTEGER BUFFER
(parameters
w
@ I/0 path
name

[-
—={ OPTIONAL } | " hame |
REAL (%)
. BUFFER
eptional INTEGER

(parameters
string =
I/0 path)
name

SUB 429

.. Range
Item Description/Default Restrictions

subprogram name name of the SUB subprogram any valid name
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
/0 path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)
program segment any number of contiguous program lines not —

containing the beginning or end of a main

program or subprogram

Example Statements

SUB Parse{(Strind%)
SUB Transform(@Printer»INTEGER Arrav (%) ,0PTIONAL Text$)

Semantics

SUB subprograms must appear after the main program. The first line of the subprogram must
be a SUB statement. The last line must be a SUBEND statement. Comments after the SUBEND
are considered to be part of the subprogram.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the subprogram is invoked (see CALL). Parameters to the right of OPTIONAL are optional, and
only need to be supplied if they are needed for a specific operation. Optional parameters are
associated from left to right with any remaining pass parameters until the pass parameter list is
exhausted. An error is generated if the subprogram tries to use an optional parameter which did
not have a value passed to it. The function NPAR can be used to determine the number of
parameters supplied by the CALL statement invoking the subprogram.

Variables in a subprogram’s formal parameter list may not be duplicated in COM or other
declaratory statements within the subprogram. A subprogram may not contain any SUB state-
ments, or DEF FN statements. Subprograms can be called recursively and may contain local
variables. A unique labeled COM must be used if the local variables are to preserve their values
between invocations of the subprogram.

SUBEXIT may be used to leave the subprogram at some point other than the SUBEND.
Multiple SUBEXITs are allowed, and SUBEXIT may appear in an IF...THEN statement.
SUBEND is prohibited in IF... THEN statements, and may only occur once in a subprogram.

If yéu want to use a formal parameter as a BUFFER, it must be declared as a BUFFER in both the
formal parameter list and the calling context.

SUBEND

See the SUB statement.

430

SUBEXIT

Option Required None
Keyboard Executable No
Programmable Yes
Inan IF.. THEN... Yes

This statement may be used to return from a SUB subprogram at some point other than the
SUBEND statement. It allows multiple exits from a subprogram.

431

SUM

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the sum of all elements of a numeric array. The value returned is of the same
type as the array.

array
(S (O~ 5 ()

. Range
Item | Description/Default | Restrictions
array name |nmneofanunwﬁcanay I any valid name

Example Statements

Arrav_.sum=5UM(A)
Sum_sqauares=5UM(Sauares)

432

SUSPEND INTERACTIVE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement disables the (EXECUTE), (ENTER), (_RETURN), (PAUSE), (STOP), (CLR 10), (BREAK], and
(optionally) key functions during a running program.

(SUSPEND INTERACTIVE) - >

O~

Example Statements

SUSPEND INTERACTIVERESET
IF NOT Kbd_flag THEN SUSPEND INTERACTIVE

Semantics

Execution of a PAUSE statement, a TRACE PAUSE statement, or a fatal execution error
temporarily restores the suspended key functions. CONTINUE after a PAUSE will again disable
the keys.

SUSPEND INTERACTIVE is cancelled by RESUME INTERACTIVE, STOP, END, RUN,
SCRATCH, GET, LOAD, or (RESET). Although LOAD cancels SUSPEND INTERACTIVE, LOAD-
SUB does not. SUSPEND INTERACTIVE has no effect unless a program is running.

Note

Suspending the (RESET) key will prevent you from stopping a program
before it ends.

('EXECUTE) (ENTER) and (RETURN) can still be used to respond to an ENTER or INPUT statement, but
cannot be used for live keyboard execution.

SWEDISH

See the LEXICAL ORDER IS statement.

SYMBOL

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement allows labelling with user-defined symbols.

(swsoL Y 3 =) - -
O~
(-)—(epee)

’

- Range
Item | Description/Default I Restrictions
array name name of a two-dimensional, two-column or any valid name

three-column REAL array

Example Statements

SYMBOL Mv_char(#*)
SYMBOL Logo(*) FILLEDGE

Semantics

The user-defined symbol is created with moves and draws defined in a symbol coordinate
system. The symbol coordinate system is a rectangular area nine units wide and fifteen units high,
that is, a character cell. A symbol can extend outside the limits of the 9 x 15 symbol coordinate
system rectangle. A symbol defined in the symbol coordinate system is affected by the label
transformations CSIZE, LDIR, and LORG. The symbol is drawn using the current pen and line
type, and it will be clipped at the current clip boundary.

When defining a symbol in the symbol coordinate system, coordinates may be outside the 9 X 15
character cell; thus, characters can be made which are several character cells wide and several
character cells high. For this reason, the current pen position is not updated to the next
character’s reference point, but it remains at the last X,Y coordinate specified in the array. A
move is made to the first point regardless of the value in the third column of that row of the array.

The symbol may have polygons defined in its data, and the polygons may be filled and/or edged.
The fill color and pen number/line type used are those defined at the time the polygon is closed.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the array
is reached, or when the value in the third column is an even number less than three, or in the
ranges 5 to 8 or 10 to 15.

433

434 SYMBOL

If FILL and/or EDGE are specified on the SYMBOL statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen color. If
polygon mode is entered from within the array, and the FILL/EDGE directive for that series of
polygons differs from the FILL/EDGE directive on the SYMBOL statement itself, the directive in
the array replaces the directive on the statement. In other words, if a “start polygon mode”
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the SYMBOL statement, FILL occurs first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be edged,
regardless of the directives on the statement.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1- The starting point for labels drawn after lines or axes is affected by scaiing

Note 2: The starting point for labels drawn after other labels is affected by LDIR

Note 3 The starting point for labels drawn after lines or axes is affected by PIVOT

Note 4. RPLOT and IPLOT are affected by PDIR

SYMBOL

When using an SYMBOL statement, the following table of operation selectors applies. An
operation selector is the value in the third column of a row of the array to be plotted. The
array must be a two-dimensional, two-column or three-column array. lf the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op-
erations. Polygons may be defined, edged (using the current pen), filled (using the current fill
color), pen and line type may be selected, and so forth. See the list below.

Operation
Column 1 Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array SYMBOL statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.

The value in column two is ignored.

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu-
ated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

435

436 SYMBOL

Defining a Fill Color

Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessariy immediately), is a row whose operation selector in col-
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities(which range from O thru 1) for red, green, and blue
in the variables R, G, and B, respectively, the value for the first column in the array could be
defined thus:

Array (Row»1)=SHIFT(1G6*(1-B)»-10)+GHIFT(1G*(1-G)-3)+16*(1-R)

If there is a pen color in the color map similar to that which you request here, that non-
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons

A six, ten, or eleven in the third column of the array begins a ‘‘polygon mode”’. If the opera-
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11, the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify-
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec-
tors 6, 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

SYMBOL

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the SYMBOL statement, so one probably would not have more than
one operation selector 12 in an array to SYMBOL, since the last FRAME will overwrite all the
previous ones.

Premature Termination

Operation selector 8 causes the SYMBOL statement to be terminated. The SYMBOL state-
ment will successfully terminate if the actual end of the array has been reached, so use of
operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than —2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be
edged, regardless of the directives on the statement.

437

438

SYSBOOT

Option Required None
Keyboard Executable Yes
Programmable No
In an IF.. THEN.. No

This command returns control to the BOOT ROM to restart the system configuration and
selection process.

Example Statements
SYSBOOT

SYSTEM PRIORITY

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement sets system priority to a specified value.

(SYSTEM PRIORITY }— new priority —wf

Item | Description/Default | Re?tiriinc“t;ii)ns
new priority | numeric expression, rounded to an integer | 0 thru 15

Example Statements

BYSTEM PRIORITY D14
IF Critical_code THEN SYSTEM PRIORITY 15

Semantics

Zero is the lowest user-specifiable priority and 15 is the highest. The END, ERROR, and
TIMEOUT events have an effective priority higher than the highest user-specifiable priority. If no
SYSTEM PRIORITY has been executed, minimum system priority is O.

This statement establishes the minimum for system priority. Once the minimum system priority is
raised with this statement, any events of equal or lower priority will be logged but not serviced. In
order to allow service of lower-priority events, minimum system priority must be explicitly
lowered.

If SYSTEM PRIORITY is used to change the minimum system priority in a subprogram context,
the former value is restored when the context is exited.

Error 427 results if SYSTEM PRIORITY is executed in a service routine for an ON ERROR
GOSUB or ON ERROR CALL statement.

439

440

SYSTEMS$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns a string containing system status and configuration information. (If using
SYSTEMS$ with SRM, also refer to the “SRM” section of this manual.)

type of
information

literal form of type of information:

————@———CAVAILABLE MEMORY)}—

GRAPH

LEX

—(GRAPHICS INPUT 15)}—>

PLOTTER 1S -

T

——(LEXICAL ORDER IS)—»

MASS MEMORY

MASS STORAGE IS

)

MSI

PRINTALL IS

PRINTER IS

SERIAL NUMBER

SYSTEM ID

SYSTEM PRIORITY

TRIG MODE

il

i

(KEYBOARD LANGUAGE)—={

~0 -

—=(verston: P! "

SYSTEM$

. Range
Item Description/Default Restrictions

BASIC, KBD, CLOCK,
10, MS, GRAPH,
GRAPHX, LEX, MAT,
PDEV, XREF, SRM,
TRANS, ERR, DISC,
CS80, HP988&5,
BUBBLE, EPROM,
HPIB, FHPIB, GPIO,
DCOMM, SERIAL,
BCD, CRTA, CRTB

type of information string expression

option name literal specifying an option or BIN

Example Statements
IF TRIM$(SYSTEM$(“"SYSTEM ID"))="9836A" THEN CALL New_machine

System.Prior=VAL(SYSTEM$("SYSTEM PRIORITY"))

Semantics
The topic specifier is used to specify what system configuration information the system will return.

The following table lists the valid topic specifiers and the type of information returned by the
system for each of the topic specifiers.

441

442 SYSTEMS$

Topic Specifier

Information Returned

AVAILABLE MEMORY
CRT ID

DUMP DEVICE IS

GRAPHICS INPUT IS

KBD LINE

KEYBOARD LANGUAGE

LEXICAL ORDER IS

MASS MEMORY

MASS STORAGE IS
MSI

PLOTTER IS

PRINTALL IS

PRINTER IS

SERIAL NUMBER

Bytes of available memory
: BOHCGB
i '=---B=Bit Map Display
Space =Not Bit Map Display
——-G = Graphics Available
Space =No Graphics

~~C =Color Available
Space =No Color

!
|
i

—————————

!
!
!
|
1
|
|
|
[
|
|
|

L - H=CRT Highlights Available
Space = No Highlights

--CRT Width in Characters
L - - —-Distinguishes this format from Series 500 BASIC responses.

6
i
\
!
|
|
|
|
!
|
i
|
!
|
|
|
|
|
|
!

|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'

A string containing numerals which specify the device selector for the currently
assigned DUMP DEVICE IS device.

A string containing numerals which specify the device selector for the currently
assigned GRAPHICS INPUT IS device. Zero is returned if no device is current-
ly selected.{Requires GRAPH)

A string containing the current contents of the keyboard input line(s). Note that
this operation does not change the contents of the line(s).

ASCII, BELGIAN, CANADIAN ENGLISH, CANADIAN FRENCH, DANISH,
DUTCH, FINNISH, FRENCH, GERMAN, ITALIAN, KATAKANA, LATIN,
NORWEGIAN, SPANISH, SWEDISH, SWISS FRENCH, SWISS GERMAN,
SWISS FRENCH*, SWISS GERMAN¥*, or UNITED KINGDOM (Requires
LEX)

ASCII, GERMAN, FRENCH, SPANISH, SWEDISH or USER DEFINED (Re-
quires LEX)

X000YZ0000000000 X =Number of internal disc drives
Y =Number of initialized EPROM cards
Z =Number of bubble memory cards
Y or Z exceed 9, an asterisk appears.

The mass storage unit specifier of the current MASS STORAGE IS device, as it
appears in a CAT heading.

A string containing numerals which specify the device selector of the current
PLOTTER IS device or the path name of the current PLOTTER IS file.
(Requires GRAPH)

A string containing numerals which specify the device selector of the current
PRINTALL IS device.

A string containing numerals which specify the device selector of the current
PRINTER IS device or the path name of the current PRINTER IS file.

If an ID PROM is present, this string contains bytes 4-14 of that PROM.
Otherwise, a null string is returned.

Topic Specifier

SYSTEM$ 443

Information Returned

SYSTEM ID

- SYSTEM PRIORITY
TRIG MODE
VERSION: option name

S5300:20 on Series 300 computers with an MC68020 processor; or
5300:10 on Series 300 computers with an MC68010 processor; or

bytes 15 thru 21 of the ID PROM in a Series 200 computer (if present); or
9816, 9826A, or 9836A padded with trailing spaces to make a seven character
string.

A string containing numerals which specify the current system priority.
DEG or RAD

A string containing numerals which specify the revision number displayed at
power up and displayed after LOAD BIN or LIST BIN.

TAB

See the PRINT and DISP statements.

See the PRINT statement.

See the SEND statement.

TABXY

TALK

444

TAN

Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This function returns the tangent of the angle represented by the argument. Error 31 occurs
when trying to compute the TAN of an odd multiple of 90 degrees.

D ORI N0

Range

Item Description/Default Restrictions

argument numeric expression in current units of angle absolute value less than:
8.541 563 906 E + 9 deg.
or

1.490 784 13 E+8 rad.

Example Statements

Tandent=TAN(Andgle)
PRINT "Tandent of"3Zi"="3TAN(I)

TIME

Option Required CLOCK
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function converts the formatted time of day (HH:MM:SS), into the number of seconds past
midnight. (Also see the OFF TIME, ON TIME, and SET TIME statements.)

GO S EETEI= O

literal form of time of day:

—O@—.lhour‘s I—-Idelimiterl—D-' minutes II ¢®—>
L—Idelimiterl-——{ seconds]——j

Item Description/Default Re?t?ir::!t!ieons
time of day string expression representing the time in 24- (see drawing)
hour format
hours literal 0 thru 23
minutes literal 0 thru 59
seconds literal; default = O 0 thru 59.99
delimiter literal; single character (see text)

Example Statements

Seconds=TIME(T%$)
SET TIME TIME("8:37:30")
ON TIME TIME("12:12") GOSUB Food.food

Semantics

TIME returns a REAL whole number, in the range 0 thru 86 399, equivalent to the number of
seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a single colon is
recommended. Leading blanks and non-numeric characters are ignored.

445

446

TIMES$

Option Required CLOCK
Keyboard Executable Yes
Programmable Yes
Inan IF... THEN... Yes

This function converts the number of seconds past midnight into a string representing the time of
day (HH:MM:SS).

@D o (D

ded
Item | Description/Default l Regirlirt‘:st;ieons Reccgr;:;een €
seconds | numeric expression, truncated to the —4.623 683 256 E+13 0 thru 86 399
nearest second; seconds past midnight thru
+4.653 426 3350399 E+13

Example Statements

DISP "The time is: "STIME$(TIMEDATE)
PRINT TIME®(43296)

Semantics

TIMES$ takes time (in seconds) and returns the time of day in the form HH:MM:SS, where HH
represents hours, MM represents minutes, and SS represents seconds. A modulo 86 400 is
performed on the parameter before it is formatted as a time of day.

Option Required None TIMEDATE
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns the current value of the real-time clock. (Also see the SET TIMEDATE
statement.)

Example Statements

Elapsed=TIMEDATE-TO
DISP TIMEDATE MOD 86400

Semantics

The value returned by TIMEDATE represents the sum of the last time setting and the number of
seconds that have elapsed since that setting was made. The clock value set at power-on is
2.086 629 12 E + 11, which represents midnight March 1, 1900. The time value accumulates
from that setting unless it is changed by SET TIME or SET TIMEDATE.

The resolution of the TIMEDATE function is .01 seconds. If the clock is properly set, TIME-
DATE MOD 86400 gives the number of seconds since midnight.

TIMEOUT

See the OFF TIMEOUT and ON TIMEOUT statements.

447

448

TRACE ALL

Option Required PDEV
Keyboard Executable Yes
Programmable Yes
In an [F... THEN. . Yes

This statement allows tracing program flow and variable assignments during program execu-
tion.

(' TRACE ALL)} - - =

beginning ending
line number

line number
line label

ending
line label

o Range
Item Description/Default Restrictions

beginning line integer constant identifying a program line; 1 thru 32 766
number Default = first program line
beginning line label | name of a program line any valid name
ending line number | integer constant identifying a program line; 1 thru 32 766

Default = last program line
ending line label name of a program line any valid name

Example Statements

TRACE ALL Sort
TRACE ALL 1300,2450

Semantics

The entire program, or any part delimited by beginning and (if needed) ending line numbers or
labels, may be traced.

The ending line is not included in the trace output. The trace output stops immediately before
the ending line is executed. When the program is traced, execution of the lines within the
tracing range causes the line number and any variable which receives a new value to be output
to the system message line of the CRT. Any type of variable (string, numeric or array) can be
displayed. For simple string and numeric variables, the name and the new value are displayed.
For arrays, a message is displayed stating that the array has a new value rather than outputting
the entire array contents.

TRACE ALL output can also be printed on the PRINTALL printer, if PRINTALL is ON. TRACE
ALL is disabled by TRACE OFF. The line numbers specified for TRACE ALL are not affected
by REN.

449

TRACE OFF

Option Required PDEV
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement turns off all tracing activity.

TRACE OFF

450

TRACE PAUSE

Option Required PDEV
Keyboard Executable Yes
Programmable Yes
Inan [F... THEN... Yes

This statement causes program execution to pause before executing the specified line, and
displays the next line to be executed on the CRT.

(TRACE PAUSE) - -

paused
line number

line label

. Range
Item Description/Default Restrictions
paused line number | integer constant identifying a program line; 1 thru 32 766

Default = next program line

paused line label name of a program line any valid name

Example Statements

TRACE PAUSE
TRACE PAUSE Loop_end

Semantics

Not specifying a line for TRACE PAUSE results in the pause occurring before the next line is

executed. Only one TRACE PAUSE can be active at a time. TRACE PAUSE is cancelled by
TRACE OFF.

TRACK

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement enables and disables tracking of the current locator position on the current display
device.

O e Tl e € ll
OFF

Item | Description/Default l Re?t?incst;iims
display device selector | numeric expression, rounded to an integer I {see Glossary)

Example Statements

TRACK 708 IS ON
TRACK Plot IS OFF

Semantics

The current locator is defined by a GRAPHICS INPUT IS statement, and the current display
device is defined by a PLOTTER IS statement. If TRACK...IS ON is executed, an echo on the
current display device tracks the locator position during DIGITIZE statements. On a CRT, the
echo is a 9-by-9-dot crosshair. On a plotter, the pen position tracks the locator. When a point is
digitized, the echo is left at the location of the digitized point and tracking ceases.

The display device selector must match that used in the most recently executed PLOTTER IS
statement, or error 708 results.

Executing TRACK...IS OFF disables tracking.

451

452

TRANSFER

Option Required TRANS
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement initiates unformatted I/O transfers. (If using TRANSFER with SRM, also refer to

the “SRM” section of this manual.)

destination

name

(s~ ~(D—~@)

number |

of bytes

DELIM)——DI character l—-b

b f
recoros) Poceros |

(D

™

number
of bytes

COUN)—DI

DELIM }-—P|char acter

ql_@

CONT

TRANSFER 453

. Range
Item Description/Default Restrictions
source name I/O path name assigned to a device, a group of any valid name
devices, a mass storage file, or a buffer
destination name /O path name assigned to a device, a group of any valid name
devices, a mass storage file, or a buffer
number of bytes numeric expression, rounded to an integer 1thru2* -1
character string expression with a length of zero or one —
number of records numeric expression, rounded to an integer 1 thru 2°' -1

Example Statements

TRANSFER @Device TO EBBuff

TRANSFER @Buff TO BFilesCONT

TRANSFER @Path TO @DestinationiCOUNT 256
TRANSFER @Source TO @BuffersDELIM "/"

TRANSFER BPath TO @GBufferiRECORDS 12,EOR(COUNT 8)

Semantics

The TRANSFER statement allows unformatted data transfers between the computer and devices
(mass storage drives are considered devices for this operation). Whenever possible, a TRANS-
FER takes place concurrently with continued program execution. Since no formatting is per-
formed and the TRANSFER statement executes concurrently (overlapped) with regular program
execution, the highest possible data transfer rate is achieved.

Before a data transfer can take place, a buffer must be declared. Every TRANSFER will need a
buffer as either its source or its destination. An outbound TRANSFER empties the buffer (source)
while an inbound TRANSFER fills the buffer (destination). Device to device transfers and buffer
to buffer transfers are not allowed.

Two types of buffers are available; named and unnamed. A named buffer is a REAL array,
INTEGER array, or a string scalar declared with the keyword BUFFER. See ASSIGN, COM, DIM,
INTEGER, and REAL. Unnamed buffers are created in the ASSIGN statement by specifying the
keyword BUFFER and the number of bytes to be reserved for the buffer. See ASSIGN.

Every buffer has two pointers associated with it. The fill pointer indicates the next available
location in the buffer for data. The empty pointer indicates the next item to be removed from the
buffer. This allows an inbound TRANSFER and an outbound TRANSFER to access the same
buffer simultaneously.

BDAT is the only file type allowed in a TRANSFER. An end-of-file error will prematurely
terminate a TRANSFER, thus triggering an end-of-transfer condition. If an end-of-record condi-
tion was satisfied when the end-of-file was reached, the EOR event will also be true.

454 TRANSFER

/O path names should be used to access the contents of the buffer. This ensures the automatic
updating of the fill and empty pointers during a transfer. For named buffers, the contents of the
buffer can also be accessed by the buffer’s variable name. However, accessing the contents of
the buffer by the variable name does not update the fill and empty pointers and is likely to
corrupt the data in the buffer.

Transfer Parameters

When no parameters are specified for a TRANSFER, an inbound TRANSFER will fill the buffer
with data and then terminate. An outbound transfer will empty the buffer and then terminate.
Both inbound and outbound transfers execute in overlapped mode when possible.

The CONT parameter specifies that the TRANSFER is to continue indefinitely. Instead of
terminating on buffer full or buffer empty conditions, the TRANSFER will be temporarily
suspended until there is space available in the buffer (for inbound transfers) or until there is data
available in the buffer (for outbound transfers).

The WAIT parameter specifies that the TRANSFER is to take place serially (non-overlapped).
Program execution will not leave the TRANSFER statement until the data transfer is completed.

A TRANSFER can be specified to terminate when a device dependent signal is received (END),
after a specified number of bytes has been transferred (COUNT), or after a specific character is
detected (DELIM). The DELIM parameter can only be used with inbound transfers.

If END is included on a TRANSFER to a file, the end-of-file pointer is updated when the
TRANSFER terminates; including EOR (END) causes the end-of-file pointer tc be updated at the
end of each record.

When the RECORD parameter is specified, the end-of-record parameter must also be specified
(EOR). The end-of-record condition can be either COUNT, DELIM, END or any combination of
conditions.

Overlapped execution of the TRANSFER statement can be deferred until a record has been
transferred or until the entire TRANSFER has completed. See WAIT FOR EOR and WAIT FOR
EOT.

Supported Devices
The TRANSFER statement supports data transfers to and from the following devices.

HP-IB (HP 98624)
GPIO (HP 98622)
Serial (HP 98626)
Datacomm (HP 98628)
HP-IL (HP 98634)

TRANSFER can also be used with BDAT files on any of the mass storage devices supported by
BASIC 4.0 except the 9144A and the 9122 formatted for 512-byte sectors (format option 2).

TRANSFER 455

Transfer Method
The transfer method is device dependent and chosen by the computer. The three possible
transfer modes are:

INT interrupt mode
FHS fast handshake
DMA direct memory access

The DMA mode will be used whenever possible. If the DMA mode cannot be used (DMA card is
notinstalled, both channels are busy, DELIM is specified, or the interface does not support DMA)
then the INT mode will be used. FHS is used with the HP-IB or GPIO interfaces only when DMA
cannot be used and the WAIT parameter is specified.

Interactions

When the computer tries to move into the stopped state, it will wait for any transfer to complete.
Therefore, operations which would cause a stopped state will make the computer unresponsive
(or “hung’’) if a TRANSFER is in progress. Operations in this category include a programmed
GET, modifying a paused program, and STOP. Also, the computer will not exit a context until
any TRANSFER in that context is complete. This will cause the program to wait at a SUBEXIT,
SUBEND, or RETURN <expression> statement while a TRANSFER is in progress.

To terminate a transfer before it has finished (and free the computer), execute an ABORT IO (or,

as a last resort, press (RESET)).

See also: ASSIGN, WAIT FOR EOT, WAIT FOR EOR, ABORTIO, RESET and the ‘‘Transfer’’
chapter of the BASIC Interfacing Techniques manual.

456

TRIGGER

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF... THEN. .. Yes

This statement sends a trigger message to a selected device, or all devices addressed to listen,
on the HP-IB.

I/0 path
name

selector

TRIGGER

.. Range
Item Description/Default Restrictions
I/0O path name name assigned to a device or devices any valid name
(see ASSIGN)
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements

TRIGGER 712
TRIGGER @Hpeib

Semantics

The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which are addressed to
listen are triggered. If a primary address is given, the bus is reconfigured and only the addressed

device is triggered.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN UNL ATN UNL
Controller GET LAG GET LAG
GET GET
Not Active Error
Controller ‘

TRIM$
Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns the string stripped of all leading and trailing ASCII spaces.

string
RIS} —() O

Example Statements

Undustify$d=TRIM$ (" center ")
Clean$=TRIM${(InrPuts$)

Semantics
Only leading and trailing ASCII spaces are removed. Embedded spaces are not effected.

TRN
See the MAT statement.
UNL
See the SEND statement.
UNT
See the SEND statement.
UNTIL

See the REPEAT...UNTIL construct.

457

458

UPCS$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function replaces any lowercase characters with their corresponding uppercase characters.
stri
wes () D

Example Statements

Carital$=UPCs("lower")
IF UPC$(Name$)="TOM" THEN Eaual_tom

Semantics

The corresponding characters for the Roman Extension alphabetic characters are determined by
the current lexical order. When the lexical order is a user-defined table, the correspondence is
determined by the STANDARD lexical order.

USING

See the DISP, ENTER, LABEL, OUTPUT, and PRINT statements.

VAL

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function converts a string expression into a numeric value.
stri
© O

Range

Item | Description/Default | Restrictions

string argument string expression numerals, decimal point, sign

and exponent notation

Example Statements

Dav=VaL(Date$)
IF VAL (Response$)<0 THEN Nedative

Semantics

The first non-blank character in the string must be a digit, a plus or minus sign, or a decimal
point. The remaining characters may be digits, a decimal point, or an E, and must form a valid
numeric constant. If an E is present, characters to the left of it must form a valid mantissa, and
characters to the right must form a valid exponent. The string expression is evaluated when a
non-numeric character is encountered or the characters are exhausted.

459

460

VAL$

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN. .. Yes

This function returns a string representation of the value of the argument. The returned string is
in the default print format, except that the first character is not a blank for positive numbers. No
trailing blanks are generated.

numeric
vas (0 O

Item | Description/Default Restrictions

‘ Range

numeric argument | numeric expression | —

Example Statements

PRINT Esc$%iVAL$(Cursor-1)
Special%=Text$RVAL$S (Number)

VIEWPORT

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF... THEN. . Yes

This statement defines an area onto which WINDOW and SHOW statements are mapped. It
also sets the soft clip limits to the boundaries it defines.

left right bottom top
(uaewporT)—f 2550 () O O

Item Description/Default Reg?;%fms
left edge numeric expression —
right edge numeric expression >left edge
bottom edge numeric expression —
top edge numeric expression >bottom edge

Example Statements

UIEWPORT 0:35,:50,80
VIEWPORT LeftsRight+Bottom:Tor

Semantics

The parameters for VIEWPORT are in Graphic Display Units (GDUs). Graphic Display Units are
1/100 of the shorter axis of a plotting device. The units are isotropic (the same length in X and Y).
The soft clip limits are set to the area specified, and the units defined by the last WINDOW or
SHOW are mapped into the area.

For the plotter specifier “INTERNAL”’ (the CRT), the shorter axisis Y. The longer axis is X, which
is 100 x RATIO GDUs long. For the plotter specifier “HPGL” (which deals with devices other
than the CRT), the RATIO function may be used to determine the ratio of the length of the X axis
to the length of the Y axis. If the ratio is greater than one, the Y axis is 100 GDUs long, and the
length of the X axis is 100 x RATIO. If the ratio is less than one, then the length of the X axis is 100
GDUs and the length of the Y axis is 100 x RATIO.

A value of less than zero for the left edge or bottom is treated as zero. A value greater than the
hard clip limit is treated as the hard clip limit for the right edge and the top. The left edge must
be less than the right edge, and the bottom must be less than the top, or error 704 results.

461

462

WAIT

Option Required TRANS
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement will cause the computer to wait approximately the number of seconds specified
before executing the next statement. Numbers less than 0.001 do not generate a WAIT interval.

(HAIT}—Dl seconds I——.]

Range
Restrictions

less than 2 147 483.648

Item | Description/Default |

seconds numeric expression, rounded to the nearest

thousandth

Example Statements

WAIT 3
WAIT Old_time/2

463

WAIT FOR EOR

Option Required TRANS
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement waits until an end-of-record event occurs in the TRANSFER on the specified /O
path.

(na1t For eoR)—(@f 7052 |~

Range

Item | Description/Default | Restrictions

/O path name name assigned to a device, a group of devices, or

a mass storage file

any valid name

Example Statements

WAIT FOR EDR BFile
WAIT FOR EOR BDevice

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file. If the
[/O path is assigned to a BUFFER, an error is reported when the WAIT FOR EOR statement is
executed.

The WAIT FOR EOR statement prevents further program execution until an end-of-record event
occurs in the TRANSFER whose I/O path name was specified. This allows ON EOR events, which
might otherwise be missed, to be serviced. If the system priority prevents the servicing of an ON
EOR event, the event will be logged.

The /O path specified must be involved in an active TRANSFER for the statement to have any
effect.

464

WAIT FOR EOT

Option Required TRANS
Keyboard Executable Yes
Programmable Yes
In an [F... THEN.. . Yes

This statement waits until the TRANSFER on the specified 1/O path is completed.

(w1t Fon 0T —(e) /252" |~

Range

Item \ Description/Default | Restrictions

name assigned to a device, a group of devices. or any valid name

a mass storage file

/O path name

Example Statements

WAIT FOR EOT @File
WAIT FOR EOT BDevice

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file. If the
1/O path is assigned to a BUFFER, an error is reported when the WAIT FOR EOT statement is
executed. -

The WAIT FOR EOT statement prevents further program execution until the specified TRANS-
FER is completed. This allows ON EOT events. which might otherwise be missed, to be serviced.
If the system priority prevents the servicing of an ON EOT event, the event will be logged.

The /O path specified must be involved in an active TRANSFER for the statement to have any
effect.

WHERE

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement returns the current logical position of the pen and, optionally, pen status informa-
tion. .

(@HERE) | X vg;;:ble () I y vg;;zble -

status variable
name

Item Description/Default Re?tarli'::st;ieons
X variable name name of a numeric variable any valid name
y variable name name of a numeric variable any valid name
status variable name name of a string variable whose dimensioned any valid name
length is at least 3

Example Statements
WHERE X ¥
WHERE X_.pPosition:Y.PositionsStatuss

Semantics

The characters in the status string may be interpreted as follows:

Byte 1 Byte 2 Byte 3

Pen y Point
Status Significance

Byte | Value Meaning
1 “0” Pen is up
“1” Pen is down
2 comma | (delimiter)
3 “0” Current position is outside hard clip
limits.
“1” Current position is inside hard clip
limits but outside viewport boundary.
27 Current position is inside viewport
boundary and hard clip limits.

465

466

WHILE

Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN. . No

This construct defines a loop which is executed as long as the boolean expression in the WHILE
statement evaluates to true (evaluates to a non-zero value).

boolean
WHILE expression
program
segment

END WHILE

Item Description/Default Range
Restrictions

boolean expression | numeric expression; evaluated as true if non- —
zero and false if zero.

program segment any number of contiguous program lines not —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

Example Program Segments

840 WHILE Yalue«Min OR Value>Max

8350 BEEP

860 INPUT "Out of rande’ RE-ENTER"Value
870 END WHILE

1220 WHILE P<=LEN{A%)

1230 IF NUM(A$LP1)<32 THEN

1240 AsLPI=A%LP+1] I Remove control codes
1250 ELSE

1260 P=P+1 I Go to next character
1270 END IF

1280 END WHILE

WHILE 467

Semantics

The WHILE...END WHILE construct allows program execution dependent on the outcome of a
relational test performed at the start of the loop. If the condition is true, the program segment
between the WHILE and END WHILE statements is executed and a branch is made back to the
WHILE statement. The program segment will be repeated until the test is false. When the
relational test is false, the program segment is skipped and execution continues with the first
program line after the END WHILE statement.

Branching into a WHILE...END WHILE construct (via a GOTO) results in normal execution up
to the END WHILE statement, a branch back to the WHILE statement, and then execution as if
the construct had been entered normally.

Nesting Constructs Properly

WHILE...END WHILE constructs may be nested within other constructs, provided the inner
construct begins and ends before the outer construct can end.

WIDTH

See the PRINTALL IS and PRINTER IS statements.

468

WINDOW

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement is used to define the current-unit-of-measure for graphics operations.

left right bottom top
COED e e O O O

Item Description/Default Re?t?ir::st;ieons
left edge numeric expression —
right edge numeric expression # left edge
bottom edge numeric expression —
top edge numeric expression # bottom edge

Example Statements

WINDOW -535,04+100
WINDOW LeftsRightsBottomsTop

Semantics

WINDOW defines the values represented at the hard clip boundaries, or the boundaries de-
fined by the VIEWPORT statement. WINDOW may be used to create non-isotropic (not equal
in X and Y) units. The direction of an axis may be reversed by specifying the left edge greater
than the right edge, or the bottom edge greater than the top edge. (Also see SHOW.)

WORD

See the ASSIGN statement.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

WRITEIO

This statement writes an integer representation of the register-data to the specified hardware
register on the specified interface. The actual action resulting from this operation depends on
the interface and register selected.

GEDSEEEA O e
.. Range Recommended
Item Description/Default Restrictions Range
interface select numeric expression, rounded to an integer 1 thru 31 —_
code
register number numeric expression, rounded to an integer — 231 thru interface
+231 -1 dependent
register data numeric expression, rounded to an integer - 231 thru —32 768 thru
+231-1 +32 767

Note

Unexpected and possibly undesirable results may occur with select
codes outside the given range.

Example Statements

WRITEID 12:03i5et_pPctl
WRITEIO Hpib 23312

469

470

XREF

Option Required XREF
Keyboard Executable Yes
Programmable No
In an IF... THEN.. . No

This command allows you to obtain a cross-reference listing of the identifiers in a program or
subprogram.

(' xREer) \ -
O~
Item Description/Default Range
Restrictions

device selector numeric expression; rounded to an integer (see Glossary)
Default = PRINTER IS device

subprogram name name of a SUB subprogram or MAIN currently in any valid name
memory

function name name of a user-defined function currently in any valid name
memory

Example Statements
MREF

VREF #70S3iFNUsers
MREF Print

YREF 1N

XREF

Semantics

The cross-reference listing is printed one context at a time, in the order that they occur in the
program. The main program is listed first, followed by the subprograms.

The cross-reference listing starts with this line:
»#» Cross Reference <44

Before each subsequent program segment, this line is printed:
#x Subprodgram <44

followed by the line number of the first line in that context and the name of the context. If the
subprogram is a user-defined function, an Fn will precede the name, and if it is a string function, a
% will follow its name.

Within each context, identifiers are listed by type. They occur in the following order:

o NV—_Numeric Variables

e SV-String Variables

e |O-1/0O Path Names

e LI -Line Labels

e [N-Line Numbers

e NF-Numeric Functions

e SF-String Functions

e SB-SUB Subprograms

o CM—Common Block Names
® UN-Unused Entries

If a type is specified in the command, only that type is printed. If there are no identifiers of a
particular type in the context being cross-referenced, that heading is not printed.

Within each group (which is composed of a header telling what kind of entity follows, then the list
of those entities), names are alphabetized according to the ASCII collating sequence, and line
numbers are in numerical order. If a reference is a formal parameter in a SUB or DEF FN
statement, declared in a COM, DIM, REAL, or INTEGER statement, or is a line label, the
characters < -DEF will be printed immediately to the right of the line number containing the
defining declaration. Note that variables declared by ALLOCATE are not given this marker. If
unlabelled (blank) COM is used, it will have no name associated with it.

471

472 XREF

At the end of each context, a line is printed that begins with:
Urnused entries =

This is a count of the symbol table entries which have been marked by a prerun as “‘unused.”
Unreferenced symbol table locations which have not yet been marked "‘unused’” by the prerun
processing will show up in the lists of identifiers with empty reference lists. Note that a subpro-
gram that is not directly recursive will show up in its own cross-reference listing with an empty
reference list.

If a subprogram name or MAIN is specified in the XREF command. the above rules are followed,
but only the specified subprogram or the MAIN program is cross-referenced. If there are two or
more subprograms of the same name in the computer. they will all be cross-referenced.

An XREF can be aborted by pressing (RESET). (CLR I0) or (Break) .

BASIC Language Reference
for HP Series 200/300 SRM Workstation

This section lists all BASIC keywords either used exclusively with SRM or whose use with SRM
differs from that described in the BASIC Language Reference manual.

Most keyword entries in this section describe only differences between the keyword’s normal
use and its use on SRM. The body of this manual provides full details of their use. SRM-specific
keywords (CREATE DIR, LOCK, and UNLOCK) are listed in this section.

The primary difference in keyword syntax for SRM use is in file specification. Use of supported
keywords on SRM requires you to supply a remote file specifier rather than the file specifier
described for non-SRM uses of BASIC. Some keywords also involve a directory specifier,
which is unique to SRM. Remote file specifiers and directory specifiers are described at the
beginning ofthis section.

In addition, you must be aware of the access capabilities required on files and directories
involved in the keyword’s use. Access capability requirements are summarized in a table in-
cluded in this section.

473

474

Syntax for Remote File
and Directory Specification

The following syntax applies to remote file specification for BASIC keyword use on SRM. The
semantics discussion applies to all remote file specification unless otherwise noted with a specific
keyword’s description.

Remote File Specifier

(W) - |])r*leem Ontaeme] - _ =®__—‘
Item Description/Default Range Restrictions
directory path literal (see diagram)
remote file name literal any valid remote file
name (see Semantics)
password literal, first 16 non-blank characters are signifi- | any valid password (see
cant Semantics)
remote msus literal (see diagram)

Semantics

A valid remote file name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits O through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
“ > " Spaces are ignored. Passwords are assigned by the PROTECT keyword.

If no directory path is included, the system assumes the file is in the current working directory (the
directory specified in the latest MASS STORAGE IS statement). To specify a file in a directory other
than the current working directory, specify the directory path to the desired file. (Refer to the syntax
for directory path later in this section.) The directory path may begin at the current working
directory or at the root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six identifiers can be included in a specifier -- five directories in the path and the target
file. If the target file is more than five directories away from the current working directory, move
closer by changing the working directory (with MSI).

File and Directory Syntax 475

Examples
"PROJECTS/WRITERS/samples<wr_pass »sREMOTE 211 iLABELVOL_TWD<master:"

illustrates the full remote file specifier syntax. For explanations of the directory path and remote
msus portions of this illustration, see the examples with those components.

"thisfile"

specifies a file that is in the current working directory. This form assumes that the SRM (remote
mass storage) has previously been ‘“‘entered’”” via some form of the MSI ":REMDTE" statement.

Directory Path
> g]

—.0— W ©

—(CO—

Item Description/Default Range Restrictions
directory name literal any valid directory name
(see Semantics)
password literal, first 16 non-blank characters are signifi- | any valid password (see
cant Semantics)
Semantics

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits O through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
“ > Spaces are ignored. Passwords are assigned by the PROTECT.

A leading slash (/) in the directory path specifies that the path begins at the root. If you have not
previously established the remote mass storage (using, for example, MSI ":REMOTE"), you must
include some form of the remote msus with the file specifier. Including the remote msus also
specifies that the directory path begins at the root. Remote msus is explained later in this section.

Subsequent slashes delimit individual names in the path.

Using ““ .. "’ in place of a directory name specifies the directory immediately superior to the current
directory position. (Note that the root’s superior directory is the root.) Using ““. " in place of a
directory name specifies the current directory position. To specify a file or directory subordinate to
the current working directory, you do not include the current working directory in the directory

path.

476 File and Directory Syntax

Examples
The directory path:

/USERS/BO/MANUAL _PLAN<mine*alones:
begins at the root.

The directory path:

vo/filel

begins at the directory immediately superior to the current working directory.

The directory path:

PROJECTS/WRITERS writers_onlv:/samples:REMOTE
begins at the root.

The directory path:

dir_sub/filel

begins in the current working directory. In this example, 4ir_sut is immediately subordinate to the
current working directory.

Remote msus

= tou
-

SAM interface .

select code T -
SAM controller's
node address

LABEL }—="name”| - f 4
l (:) I volume
password
Item Description/Default Range Restrictions
SRM interface select integer constant 8 through 31
code
SRM controller’s node integer constant 0 through 63
address
volume name literal any valid volume name
(see Semantics)
volume password literal any valid password (see
Semantics)

File and Directory Syntax 477

Semantics

The volume name, which is assigned at the volume’s initialization, is used to identify a mass storage
volume. Volume names consist of one to 16 characters, which may include uppercase and lower-
case letters, digits O through 9, the underbar (_) character, the period (.) character, and national
language characters (CHR$(161) through CHR$(254)).

A valid volume password consists of one to 16 characters, which may include any ASCII character
except “ >"

The volume password allows complete access to all files on a mass storage volume, and is assigned
when the volume is initialized. The volume password supercedes all access restrictions placed on
files and directories by the PROTECT statement.

You need supply the SRM interface select code only if you wish to specify an SRM interface in
your Series 200/300 workstation other than that identified by the default select code. If your
workstation boots from the SRM, the default is the select code of the interface through which
the boot ROM activates your workstation. If your workstation boots from a source other than
SRM, the default select code is the lowest available SRM interface select code in the worksta-
tion. (The factory-set default value for the HP 98629A interface’s select code is 21.)

The SRM controller’s node address is necessary only if the node address of the controller is other
than the default controller’s node address.

To determine the defaults for your workstation use the following command sequence:

MSI ":REMOTE" (EXECUTE) or (Return)
cAT (_EXECUTE) or (Return)

The header of the resulting catalog listing shows the default values for your workstation’s SRM
interface select code and SRM controller’s node address, and the name of the default SRM system
volume.

If you include the controller’s node address, you must also include the SRM interface select code.

The LABEL secondary keyword identifies a volume, and is used mainly when more than one
shared volume is on the SRM system. You need supply the volume label only if you are identifying
a volume other than the default SRM system volume (in an SRM system having more than one
shared disc) or if your application requires that you specify the volume password.

The Generic Remote msus

The generic msus syntax (not indicated in the syntax diagram above) bypasses the need for all
information required by the remote msus syntax except the workstation’s SRM interface select
code. An example of this msus syntax is:

1121

478 File and Directory Syntax

Examples

The remote msus:

:REMOTE
specifies the default SRM system volume.

The remote msus: -

:REMOTE 21,13LABEL VOL_TWO<secondpass:
specifies an SRM system volume. The LABEL syntax allows inclusion of the volume password in
the remote msus. Note that, because the controller's node address is not the default and must be

specified, the SRM interface select code must also be specified, even if that select code is the
default.

Directory Specifier

_,@ - J?xﬁ&m - o =O..
Item Description/Default Range Restrictions
directory path literal (see diagram)
directory name literal any valid directory name
(see Semantics)
remote msus literal (see diagram)

Semantics

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits O through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

If no directory path is included, the current working directory (the directory specified in the latest
MASS STORAGE IS statement) is assumed for the keyword’s use. To specify a directory other than
the current working directory, specify the directory path to the desired directory. (Refer to the
syntax for directory path.) The directory path may begin at the current working directory or at the
root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six directories may be included in the directory specifier. If the target directory is more
than five directories away from the current working directory, move closer by changing the working
directory (with MSI).

File and Directory Syntax

Examples
n / "

specifies the root. This form assumes that the SRM (remote mass storage) has previously been
“‘entered’ via some form of the MSI ":REMOTE" statement. (See directory path description.)

Yewl e "

specifies the directory three levels superior to the current working directory. (See directory path
description.)

"+i{MGR_Pass>"

specifies the current working directory, with a password granting an access capability different from
that currently in effect.

Access Capability Requirements

Because SRM allows password protection of files and directories, either certain access capabilities
must be public or you must supply the password protecting those capabilities when you specify the
file or directory in the keyword syntax. For more information on password protection and access
capabilities, refer to the section on ‘““Shared Access to Remote Directories and Files” earlier in this
chapter and the PROTECT keyword entry in this reference.

The following chart lists BASIC keywords discussed in this section, indicating for each:

® whether the keyword is used with remote files, directories, or can be used with either;
® the access capabilities required on the directories superior to the specified directory or file;
® the access capabilities required on the specified directory or file itself.

Access requirements do not apply to the following keywords:

CHECKREAD
CONTROL
INITIALIZE
ON TIMEOUT
RESET
SCRATCH A
STATUS
UNLOCK
SYSTEM$

Note
For all keywords listed in the table, the READ capability must be public
on all directories in the path to the target remote file or directory.
Otherwise, you must supply the password protecting the READ capabil-
ity on any such directory.

479

480 Access Capabilities

The entries in the following table indicate the access capabilities needed for use of the designated
keyword. That is, the access capability listed must either be public (not protected with a password)
or you must supply the password protecting the capability in the file or directory specifier included
with the keyword.

For example, in an OUTPUT statement, if the WRITE capability on the file to which the data is to be
written is not public, you must supply the password entitling you to write data to that file. (You
would include the password as part of the remote file specifier in the statement assigning the I/O
path name for the file to which the data is directed.) If the READ capability on the directory
containing the remote file specified in the OUTPUT statement is not public, you must supply the
appropriate password with the directory name in the directory path to the remote file.

Access Capabilities Required for Keyword Use

Access Capabilities Required
Keyword Applies to Directory/ Superior
File Directory
ASSIGN file at least 1 READ
CAT either READ READ
COPY
source file READ READ
destination file - READ & WRITE
CREATE ASCII file - READ & WRITE
CREATE BDAT file - READ & WRITE
CREATE DIR directory — READ & WRITE
ENTER file READ READ
GET file READ READ
LOAD file READ READ
LOADSUB file READ READ
LOCK file at least 1 READ
MASS STORAGE IS directory - READ
OUTPUT file WRITE READ
PLOTTER IS file at least 1! READ
PRINTER IS file at least 1* READ
PROTECT either MANAGER READ
PURGE either MANAGER READ & WRITE
RENAME either MANAGER READ & WRITE
RE-SAVE file READ & WRITE READ & WRITE
RE-STORE file READ & WRITE READ & WRITE
RE-STORE KEY file READ & WRITE READ & WRITE
SAVE file - READ & WRITE
STORE file - READ & WRITE
STORE KEY file - READ & WRITE
STORE SYSTEM file - READ & WRITE
TRANSFER
inbound file READ READ
outbound file WRITE READ

Dash (—) means “‘does not apply.”

1 The statement, however, is not useful without WRITE access to the file.

Access Capabilities

Using Protected Files Created on a Pascal Workstation

The password protection assigned with the Pascal Filer's Access command imposes some restric-
tions on the use of BASIC keywords with a file protected with that command.

If a Pascal file’s SEARCH capability alone is protected, the BASIC catalog listing will show the file’s
READ capability as public. The protection assigned for SEARCH, however, limits the types of
BASIC read operations that can be performed on that file without the assigned password. For
example, you can catalog a directory whose READ access capability is public and whose SEARCH
access capability is not, but you cannot access any of the files or directories within that directory.

Similarly, the MANAGER access capability in BASIC encompasses the Pascal MANAGER,
CREATELINK and PURGELINK capabilities.

BASIC vs. Pascal Protections

BASIC
Access Capability Equivalent Pascal Access Capability
MANAGER MANAGER, CREATELINK, PURGELINK
READ READ, SEARCH

WRITE WRITE

481

482

Summary of BASIC Keyword Use on SRM

This section lists, in alphabetical order, the BASIC keywords that can be used with SRM and
those that are unique to SRM (CREATE DIR, LOCK, the CAT PROTECT option, UNLOCK).
Each keyword description in this section discusses only uses or features of the keyword that
apply to its use on SKM.

Syntax diagrams appear only with those keywords requiring a different syntax for use with
SRM. Where syntax diagrams are not included, you may follow the syntax described in the
body of this manual, substituting remote file specifier syntax (described in the previous sec-
tion) wherever ‘“‘file specifier’” is indicated in the keyword’s syntax.

For access capability requirements, refer to the chart in the previous section.

ASSIGN

With SRM, /O path names can be assigned to remote files, attributes can be assigned to the I/O
path, and /O paths can be closed. The following syntax and discussion describes only the use
of ASSIGN with remote files. See the body of this manual for details of other uses of ASSIGN
and the description of attributes associated with ASSIGN.

I/0 path -
name g
remote file
T0 specifier

|
X

attribute

Example Statements

ASSIGN BRemote_file TO "DIR_JOHN/dir_proJ/filel®
ASSIGN BFile TO "P1/FredsData<pass»:REMOTE"

Semantics

Assigning an I/O path name to a remote file associates the I/O path with the file at the specified or
default mass storage location.

ASSIGN opens any existing ASCII or BDAT file, regardless of protection on the file except when all
access capabilities (MANAGER, READ and WRITE) are taken from the public. Attempts to use
ASSIGN with a file whose capabilities are fully protected (without supplying the necessary pass-
words) result in Error 62.

In all other instances, a file's access capabilities are not checked at ASSIGN time. The specified
operation on the file associated with the [/O path name is not executed, however, unless the file has
the necessary access capability for that operation. For example, you may ASSIGN an I/O path
name to a file that has only the READ capability public, but attempting to perform an OUTPUT
operation without the password protecting the WRITE access capability generates Error 62.

ASSIGN does not create a file.

ASSIGN and Locked Files

Existing ASCII or BDAT files opened via ASSIGN are opened in shared mode, which means that
several users can open a file at the same time. If you lock a file (refer to LOCK) and subsequently
open that file via ASSIGN using the same @< name> (for example, to reset the file pointer), the
ASSIGN automatically unlocks the file (refer to UNLOCK). To maintain sole access to the file, you
must LOCK it again.

Closing an I/O path via ASSIGN (ASSIGN @...TO *) unlocks as well as closes the file (regardless of
the number of LOCKs in effect for the file at the time).

483

484

CAT

With SRM, CAT lists all or specified portions of the contents of a directory or information
regarding a specified PROG file. SRM adds the PROTECT option to the CAT statement. For a
full description of the CAT statement syntax and CAT options, refer to the body of this manual.

CAT ~
directory catalog
specifier device selector
“msus | array name
remote file
; specifier
{ . \‘ _—
(v J]
' i | SARM
PROTECT j : ’ and MS
(M
/
; beginning |
'(SELECT character . (s)]
() I number | -
SK1P of flles {
return | - -
‘ "(COWT) 'lvarianle name]|

(N0 HEADER) : J MS

Example Statements

CAT

CAT TO #701
CAT ":REMOTE"
CAT "00/00/00”

CAT "DIR1/DIRZ"

CAT "A/B/C:REMOTE"

CAT "My_File"3PROTECT

CAT ":REMOTE: LABEL Mastervol"
CATSSELECT "D"s SKIP Ten_files
CAT 70 Directorv$(*)3 ND HEADER

Semantics

CAT 485

To catalog remote directories, either you must include a remote msus in the CAT statement or the
latest MASS STORAGE IS statement must have specified the desired remote msus. A catalog entry

is listed for each file in the working or explicitly specified directory.

CAT to a Device

The catalog listing format used by the SRM system depends upon the line-width capacity of the

device used for display.

When cataloging a remote directory on a 50-column display, the SRM system uses the following

catalog format:

header
USERS/STEVE/PROJECTS/DIR1:REMOTE 21,0 line 1
LABEL: Discli line 2
FORMAT: SDF line 3
AVAILABLE SPACE: 54086 line 4
PUB FILE NUMBER RECORD OPEN line5
FILE NAME ACC TYPE RECORDS LENGTH STAT line6
Common.data MRW ASCII 48 256 OPEN
Personal_data BDAT 33 256 LOCK
Prodram_alprha R PROG 44 256
HP9845_DATA R DATA? 22 256
HP9B4S . STORE MRW PROG? 9 256
Pascal.file .TEXT MRHW TEX 37 256
Prodgram.500 MRW PROG? 12 236

When cataloging a remote directory on an 80-column display, the SRM system uses the following

catalog format:

header
USERS/STEVE/PROJECTS/DIRL:REMOTE 21,0 line 1
LABEL: Discl line 2
FORMAT: SDF line 3
AVAILABLE SPACE: 54096 line 4
SYS FILE NUMBER RECORD MODIFIED PUB OPEN line5
FILE NAME LEY TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT line6
Common_.data 1 ASCII 48 256 2-Dec-83 13:20 MRW OPEN
Personal._-data 1 98XE BDAT 33 256 2-Dec-83 13:20 LOCK
Prodram.alprha 1 98X6 PROG 44 256 3-Dec-83 15: 6 RH
HP9BAS_DATA 1 9845 DATA 22 256 10-0ct-83 B:45% R
HP9B4S STORE 1 9845 PROG 9 256 10-0ct-83 B:47 MRW
Pascal_file ,TEXT 1 PSCL TEX 37 256 11-Nou-83 12:25 MRW
Prodram-500 1 9000 PROG 12 256 13-Dec-83 9:54 MRW
The header gives you the following information:
line 1 Directory name and remote msus. The full path to the specified directory is

displayed. Passwords used in the path are not displayed.

If the directory path specifier contains more characters than the display width,
the last 49 or 79 characters (depending on catalog format) in the path specifier
are shown. An asterisk (¥) as the leftmost character in the path specifier
indicates that leading characters were truncated for the display.

486 CAT

The system remembers a maximum of 160 characters for any directory path
specifier at a single time. If a path specifier contains more than 160 characters,
the excess characters are removed from the beginning of the specifier and are
not retained. This restriction does not affect movement within the directory

structure.
line 2 Volume label of the volume containing the directory.
line 3 Directory format, such as SDF (Structured Directory Format). See your disc’s
operating manual for details.
line 4 Number of bytes available on the volume (given in increments of 256 bytes).
lines 5 and 6 Labels for columns of information given for each file. The information pro-

vided is summarized below.
The FILE NAME column lists the names of the remote files and directories in the directory.

The LEY column (80-column format only) shows the level of the file relative to the current
working directory or specified directory. The level is always shown as 1 in directory listings for
Series 200/300 workstations.

The PUB ACC column lists the access capabilities available to all SRM system users. The three
capabilities are READ, (k) WRITE (1) and MANAGER (M).

® Public MANAGER capability on a file or directory allows any user on the SRM system to
PURGE that file or directory and to modify or add to its passwords (with PROTECT). Pass-
word-protected MANAGER capability gives users who supply the required password both
READ and WRITE capabilities as well as MANAGER capability.

® READ capability on a directory allows you to access any file or directory in the directory. The
READ capability on a file allows you to read the contents of the file.

e WRITE capability on a directory allows you to create or delete a file or directory in that
directory. The WRITE capability on a file allows you to write information into that file.

The 5¥8 TYPE column (80-column format only) shows the type of system used to create the
file. The system type is not shown for ASCII files and directories. 98%E denotes a Series
200/300 computer. If the SRM system does not recognize the system type, a coded identifier,
obtained from the system being identified, app&ars in this column.

The FILE TYPE column indicates the file’s type. Directories are indicated as type DIR. In the
50-column format, a question mark is appended to the file type if the file was not created on a
Series 200/300 computer and was a type other than ASCII or DIR.

File types recognized by the BASIC system on SRM are: ASCII, BDAT, BIN, DIR, PROG, and
SYSTM, as well as Series 200/300 Pascal and Series 500 file types.

If the system does not recognize a file’s type, a coded file type identifier, obtained from the system
originating the file. appears in the FILE TYPE column.

CAT

The NUMBER OF RECORDS column indicates the number of records in the file and the RECORD LENGTH
column indicates the number of bytes constituting each of the file’s records.

The MODIFIED columns (80-column format only) show the date and time the file’s contents were last
changed.

The oPEN STAT column shows whether the file is currently open (0PEN), locked (LOCK) or corrupt
(CORR). OPEN indicates that the file has been opened, via ASSIGN, by a user. An open file is available
for access from other workstations. LOCK means the file is accessible only from the workstation at
which the file was locked. corr indicates that the disc lost power while accessing the file, possibly
altering the file’s contents. If the entry is blank, the file is closed and available to any user.

Note
If a file’s status is shown as corrupt (CORR), you should run the DSCK
Utility program to check the directory structure and its integrity on the
SRM system disc. Refer to the SRM Operating System Manual for
details.

CAT to a String Array
Regardless of the workstation’s display width, a CAT to a string array always produces the
80-column format.

The PROTECT Option

PROTECT is a CAT option provided by the SRM BIN file and available only on SRM. This option
also requires the MS BIN file. The PROTECT option displays the password(s) and associated access
capabilities for the specified file or directory.

For example, the statement:

CAT "Test_file<MPASS::REMOTE"iPROTECT

might produce the display:

PASSWORD CAPABILITY
MPASS MANAGER »READ +WRITE
WPASS WRITE

RPASS READ

PASSWORD MANAGER

Use of this option requires MANAGER access capability on the file or directory. If the MANAGER
capability is public, the PROTECT option may be used by any SRM user.

PROTECT must be specified separately from other CAT options, and is allowed only with SRM files
and directories. Using PROTECT with media other than SRM results in
ERROR 1 Configuration error.

487

488

CHECKREAD

For SRM, CHECKREAD is implemented as a no-op, because the CHECKREAD function is already
performed for every read and write statement on the SRM. Further checking places overhead on
the system and doing so would not be accurate. With SRM, CHECKREAD may or may not cause
a true write to the disc, while its read would probably only access the buffers in the SRM system.
SRM’s internal read and write checking and the automatic checking on the link make using

CHECKREAD unnecessary.

CONTROL

With SRM, CONTROL sends control information to the internal table associated with an I/O
path name assigned to an ASCII or BDAT file (see ASSIGN). Refer to the CONTROL keyword
entry in the body of this manual for a full explanation of CONTROL syntax.

Control registers are listed in the “‘I/O Path Status and Control Registers’ table in the Interface
Registers section of this manual.

I/0 th
CONTROL /0 pa
register
number

Example Statement
CONTROL @Rand_file,7iFile_length

489

490

COPY

With SRM, COPY allows copying of individual remote files. Remote directories and volumes
cannot be copied.

old remote new remote
CCOPY) 'I file specifier | '(70) '| file specifier] 'I

Example Statements

COPY "/Dir_1/File_1" TO "Dir.3/File_1"
COPY "File:INTERNAL" TO "File:REMOTE 21.,0"
COPY Dir_path$&File$&Msusd TO "File:INTERNAL"

Semantics

The contents of the old remote file are copied to the new remote file and an entry is placed in the
destination directory. The old and new remote files may be in the same directory, but the new
remote file’s name must be unique.

Although you may include a password in the new remote file specifier, the system ignores the

password. If you wish to protect access to the new file, you must assign the password with
PROTECT.

CREATE ASCII

With SRM, CREATE ASCII creates a new remote ASCII file, placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements

CREATE ASCII "Text03", 100
CREATE ASCII "/Diri/Dir2/ASCIIFILE" 25

Semantics
The name of the newly-created ASCII file must be unique within its containing directory.

CREATE ASCII does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE ASCII, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote ASCII
file’s initial space allocation. The physical records of an ASCII file have a fixed length of 256 bytes.
(Logical records have variable lengths, determined automatically when an OUTPUT, SAVE or
RE-SAVE statement is used.)

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file’s current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE ASCII statement’s remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE ASCII statement are ignored.

491

492

CREATE BDAT

With SRM, CREATE BDAT creates a new remote BDAT file, placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements

CREATE BDAT "File"sRecordssRec_size
CREATE BDAT "/Dirl/Dir2/BDATFILE"25+128
CREATE BDAT "Dir/File:REMOTE" 10

Semantics
The name of the newly-created BDAT file must be unique within its containing directory.

CREATE BDAT does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE BDAT, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote BDAT
file’s initial space allocation. The length of a BDAT file’s physical records is either specified by the
record size parameter or set to 256 bytes if no record size is specified.

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file’s current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size. On SRM, CREATE
BDAT does not allocate a sector for system use, as it does with local files.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE BDAT statement’s remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE BDAT statement are ignored.

The data in remote BDAT files can be accessed both serially and randomly.

CREATE DIR

Option Required SKRM,DCOMM
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement creates a directory in either the current working directory or in the specified remote
directory of an SRM mass storage device.

(CREATE DIR —={ 23055500 |—=f

Example Statements

CREATE DIR "Under.work.dir"

CREATE DIR "Levell/LevelZ/New_dir:REMOTE 21.,3"
CREATE DIR "/Levell/Level2/New_dir"

CREATE DIR "Levell<RWpassword:/New_dir"

Semantics

This statement creates a special 24-byte file of type DIR and a corresponding directory entry in the
current working directory or specified remote directory. The DIR file, or directory, keeps informa-
tion on files and directories immediately subordinate to itself.

The name of the newly-created directory must be unique within its containing directory.

Like remote data files, DIR files are extensible. Extents are added in 24-byte increments. As each
directory or data file is created within a directory, a 24-byte record identifying the addition is added
to the DIR file.

If no directory path is included in the directory specifier, the directory is created within the current
working directory (the directory specified in the latest MASS STORAGE IS statement). To specify a
target directory other than the current working directory, specify the directory path to the desired
directory.

You cannot assign passwords to a directory when you create it. Passwords are assigned only via
PROTECT. If an error occurs during execution of CREATE DIR, the directory entry in the superior
directory is not made, and the directory is not created.

DIR files are opened with the MASS STORAGE IS (MSI) statement.

Refer to the section on “‘Syntax for Remote File and Directory Specification’” earlier in this
section for details on the semantics of directory specifiers.

493

494

ENTER

With SRM, ENTER is used to read data from a remote data file identified by an I/O path name and
to assign the value(s) to variable(s). (See also ASSIGN.)

The capabilities available for using ENTER with remote files are the same as those for using
ENTER with local files. Refer to the ENTER keyword entry in the body of this manual for a full
explanation of ENTER syntax.

enter)—(@)] /0 52" . -

record image enter
number items items

Example Statements

ENTER @Remote_file,RECiAlrha%:Betat Gammas$
ENTER EName.of3iAsB

Semantics

Entering data from remote files requires the READ access capability on the superior directory and
on the file from which the data are to be read. If this capability is not public or if a password
protecting this capability was not used at the time the file was ASSIGNed, an error is reported.

GET

With SRM, GET reads the specified remote ASCII file and attempts to store the data in memory as
program lines.

Example Statements

GET "Filename:REMOTE"
GET "/Dir1/Dir2/Dir3/filename<READPass>"

Semantics

You may use GET with any ASCII file whose data is in the format of a BASIC program (that is,
having numbered lines). Although you may also use GET with ASCII files created on non-

Series 200/300 SRM workstations (HP 9835, HP 9845 or Model 520), any line that is not valid
BASIC syntax for Series 200/300 computers is stored as a commented (!) program line.

When used on SRM, GET is executed in shared mode, which means that several users can get one
file at the same time. Attempts to get a locked file (see LOCK) result in Error 453. Additionally, you
cannot get a file while it is being saved. The SAVE and RE-SAVE operations open the file in
exclusive mode (shown as LoCK in a CAT listing) and enforce that status until the SAVE or
RE-SAVE is complete. While in exclusive mode, the file is accessible only to the SRM workstation
executing the SAVE or RE-SAVE.

495

496

INITIALIZE

INITIALIZE can be used to initialize local mass storage media only. An error will result if you try to
initialize a shared system volume.

LOAD

With SRM, LOAD loads the contents of remote PROG or BIN files into memory, or sets the
typing-aid definitions of the softkeys according to the contents of a remote BDAT file.

Example Statements

LOAD "Prodram_z"
LOAD "/Diri/Dir2/Prog2" 300
LOAD "Dir3/Prog.1:REMOTE"

LDAD BIN Dir$&File$&Msus$
LOAD BIN "diri/dirZ/bin_file{Readpass>:REMOTE 21,5JiLABEL Disc"

LOAD KEY "KEYS:REMOTE"
LOAD KEY "/Diri/Dir2/Kevfile"

Semantics

LOAD

LOAD can be used with remote PROG files (created with the STORE statement). LOAD is
executed in shared mode, which means that several users can load a file at the same time. Files
being stored with the STORE or RE-STORE statements are locked during that operation and
cannot be accessed for loading.

LOAD BIN
LOAD BIN can be used with remote BIN files. LOAD BIN is executed in shared mode, which
means that several users can load a BIN file at the same time.

BIN files can be loaded into a workstation from the SKRM without the SRM BIN file present in the
workstation. Refer to the ‘“‘Booting From the SRM” section of the SRM chapter in BASIC
Programming Techniques for more details.

LOAD KEY

LOAD KEY can be used with remote BDAT files (created with the STORE KEY statement). LOAD
KEY is executed in shared mode, which means that several users can perform a LOAD KEY from a
BDAT file at the same time. Files being stored with the STORE KEY or RE-STORE KEY statements
are locked during that operation and cannot be accessed for loading.

497

498

LOADSUB

With SRM, LOADSUB allows you to load subprograms from a remote PROG file into your
workstation.

Example Statements

LOADSUB FROM "APSUBS"

LOADSUB FNRerplace$ FROM "SUBFILE"

LOADSUB ALL FROM Subfile$

LOADSUB ALL FROM "Dir3/Progfile<Readrass:"
LOADSUB ALL FROM "/Dirl/Dir2/Progz3"

Semantics

With SRM, LOADSUB is executed in shared mode, which means that several workstations can
perform a LOADSUB of a file at the same time. PROG files being stored with the STORE or
RE-STORE statement are locked during that operation and cannot be accessed for loading.

LOCK

Option Required SRM,DCOMM
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement prevents other SRM workstations from accessing the remote file to which the /O
path name is currently assigned (see ASSIGN).

(e Vo2 =) CDNDITIONAL)—-{'V;??:EETH

Item Description/Default Range Restrictions

/O path name name identifying an [/O path any valid name (See
Glossary.)

return variable name of a numeric variable any valid name (See
Glossary.)

Example Statements

LOCK BFilesCONDITIDNAL Result
LOCK BAscii 1iCONDITIONAL Error_number

Semantics

This statement establishes sole access to a file that has been opened with an ASSIGN statement.
This exclusive access remains assigned to the workstation executing the LOCK statement until an
UNLOCK statement is executed by that workstation. The UNLOCK function is also a result of
SCRATCH A, and ASSIGN...TO * (explicitly closing an 1/O path).

A file may be locked several times. The system counts the number of LOCKs on a file, and an equal
number of UNLOCKs must be executed to unlock the file. When an 1/O path name is closed (for
example, by ASSIGN...TO *), all LOCKs of that /O path name are cleared.

If the LOCK is successful, the value of the return variable will be zero. Otherwise, the return
variable’s value will be the error number corresponding to the cause of the LOCK’s failure.

499

500

MASS STORAGE IS

With SRM, MASS STORAGE IS specifies the SRM working directory.

remote
|II'IiIiiiiilIIlIIl
directory

specifier

MASS STORAGE IS

Example Statements

MSI "Dirl/Dir2/ProJect_dir"
MST ", "

MASS STORAGE IS ".<password:"
MSI ":REMOTE"

Semantics

SRM allows directories or volumes to be assigned as system mass storage. If you specify the volume
password in an MSI statement, that password is automatically applied to all accesses that use the
default msus (that is, no remote msus is specified in the remote file specifier) until a remote msus is

included in a subsequent MSI.

ON TIMEOUT

With SRM, ON TIMEOUT defines and enables a branch resulting from an /O timeout on the
specified SRM interface. Although ON TIMEOUT is supported on SRM, its use should be avoided
because the asynchronous nature of the SRM system does not allow predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE may leave a tempor-
ary file on the mass storage device. The file’s name is a 10-character identifier (the first character is
an alpha character, the rest are digits) derived from the value of the workstation’s real-time clock
when the TIMEOUT occurred. You may wish to check the contents of any such file before purging.

501

502

OUTPUT

With SRM, OUTPUT writes item(s) to the remote file to which the specified I/O path name is
assigned (see ASSIGN). Refer to the OUTPUT keyword entry in the body of this manual for a
full explanation of OUTPUT syntax.

O it

record
number

Example Statement
OUTPUT BFileiArrav (%) 4END

Semantics

You must have WRITE access capability on the remote file to output data to the file.If this capability
is not public or if a password protecting this capability was not used at the time the file was
ASSIGNed, Error 62 is reported.

If the data output to the file with this statement would overflow the file’s space allocation, the
system allocates the additional space needed to save the file (provided the disc contains enough
unused storage space). Refer to the “System Concepts” section of the SRM chapter in BASIC
Programming Techniques for more details on the extensible nature of remote files.

PLOTTER IS

With SRM, PLOTTER IS causes all subsequent plotter output to go to the specified remote
BDAT file. Refer to the PLOTTER IS keyword entry in the body of this manual for a full
explanation of PLOTTER IS syntax.

G {0~ CoeD T

X

Example Statements

PLOTTER 1S "/PL/Plotfile"
PLOTTER IS8 "Plotfile:REMOTE","HPGL"6.25,256.,25,6.,973,186.,975

Semantics

If the specified remote file is in the SRM plotter spooler directory and the file contains data, when
the file is closed the SRM system sends the data to the plotting device and then purges the file. You
may close the file by executing another PLOTTER IS statement, SCRATCH A or SCRATCH BIN,

or by pressing (RESET).

No end-of-file error occurs on SRM. If the data output to the file with this statement would
overflow the file’s space allocation, the system allocates the additional space needed to save the
file (provided the disc contains enough unused storage space). Refer to the *“System Concepts”
section of the SRM chapter in BASIC Programming Techniques for more details on the extensi-
ble nature of remote files.

503

504

PRINTER IS

With SRM, PRINTER IS specifies a remote BDAT file as the system printing file. Refer to the
PRINTER IS keyword entry in the body of this manual for a full explanation of PRINTER IS
syntax.

(eanteR 15 = "poi5, 11° | J

()
Y

o EOL > | et:ﬂr\da—r*oafm:—t:leir'nsE }
L-“}ELAYH seconds I'—P-
—(oFe)

Jﬂﬂ&
(uote)——{.55%
0

Example Statements

PRINTER IS "Spooler:REMDTE™
PRINTER IS "My_dir/Teme_print"3WIDTH BO

Semantics

The system printing file receives all data sent by the PRINT statement, all data sent by CAT and
LIST statements in which the destination is not explicitly specified, and other output generated by
the BASIC system.

If the specified remote file is in the SRM printer spooler directory and the file contains data, when
the file is closed, the SRM system sends the data to the printer and then purges the file. You may
close the file by executing another PRINTER IS statement, or a SCRATCH A or SCRATCH BIN

command.

No end-of-file error occurs on SRM. If the data output to the file with this statement would
overflow the file’s space allocation, the system allocates the additional space needed to save the
file (provided the media contains enough unused storage space). Refer to the System Con-
cepts’’ section of the SRM chapter in BASIC Programming Techniques for more details on the
extensible nature of remote files.

PROTECT

With SRM, this statement protects access capabilities by assigning passwords to remote files and
directories. The use of PROTECT with SRM is distinct from its use with local files (described in
the body of this manual).

remote file
specifier

directory
specifier

(proTECT

password

Example Statements

PROTECT "dir:REMOTE" s ("mgr" :MANAGER) » (" rw" :READ +WRITE)
PROTECT "File<rwz"s("rw":DELETE)

Semantics

PROTECT allows you to control access to remote files and directories by protecting access capabili-
ties with password(s). Access capabilities are either public (available to all SRM users) or password-
protected (available only to users supplying the correct password with the file or directory specifier).

The three access capabilities — MANAGER, READ and WRITE — are public unless the PROTECT
statement associates a password with one or more of those capabilities.

Once the capability on a given file or directory is password-protected, the capability can be exer-
cised on the file or directory only if the correct password is included in the file or directory specifier.
For instance, if a file’s READ capabilities are protected, any user wishing to execute a command or
statement that reads the file must supply a password protecting the file’s READ capability.

MANAGER

Public MANAGER capability allows any SRM user to PROTECT, PURGE or RENAME a file or
directory. Password-protected MANAGER capability provides READ and WRITE, as well as MAN-
AGER, access capabilities to users who know the password.

You must have MANAGER capabilities on a file or directory to PROTECT the access capabilities on
that file or directory. This includes adding, deleting and changing passwords.

READ

READ capability on a file allows use of commands and statements that read the contents of a file
(for example: ENTER, LOAD, GET). READ capability on a directory allows you to read the files in
the directory (CAT), or to ‘“‘pass through” a directory by including the directory name (and
password, if assigned) in a directory path.

505

506 PROTECT

WRITE

WRITE capability on a file allows use of commands and statements that write to the file (for
example: OUTPUT, RE-SAVE, RE-STORE). WRITE capability on a directory allows use of com-
mands that add or delete file names in the directory (for example: SAVE, STORE, PURGE,
CREATE, RENAME).

Use of PROTECT

Each PROTECT statement allows up to six password/capability combinations per statement. The
number of PROTECT statements that can be executed for each file or directory is unlimited,
however, as long as each password is unique.

Successive associations of capabilities with the same password are not cumulative. To retain
previous capability assignments for a file or directory, you must include those assignments in
subsequent PROTECT statements designating the same password for that file or directory.

For example, say you protected the READ access capability on a file with the password passme
then wanted to change that assignment so that passme would protect both the READ and WRITE
access capabilities for that file. If you executed a second PROTECT statement associating passme
with the WRITE capability only, passme would no longer protect the READ capability. Instead, you
should specify the password and both the READ and WRITE capabilities in the second PROTECT
statement.

To modify the access capabilities protected by a password, execute the PROTECT with the existing
password and the new password/capability pair(s).

The secondary keyword DELETE is used to delete existing password assignments for a file or
directory. To be effective, DELETE must be the only secondary keyword used with a password/
capability pair in the PROTECT statement. Otherwise, DELETE is ignored. MANAGER capability is

required to perform the DELETE. A DELETE executed without MANAGER capability results in a
protect code violation error.

507

PURGE

With SRM, PURGE deletes a file entry from a directory or an empty remote directory from its

superior directory.

remote file
specifier
.'

specifier

Example Statements

PURGE "File"
PURGE "Dir_a<RWpass:/File<MGRrass:"
PURGE "Diri/Dir2/Dir3"

Semantics

Only remote files and directories that are closed can be purged. Remote files are closed by
ASSIGN...TO * (explicitly closes an 1/O path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by

(RESET). The current working directory is closed by an MSI to a different directory.

Once a file or directory is purged, its contents cannot be recovered.

To be purged, directories must be empty (must not contain any subordinate files or directories) as

well as closed.

508

RENAME

With SRM, RENAME changes a remote file’s name in a remote directory and performs limited file
relocation.

old remote file
specifier

old directory
specifier

Example Statements

RENAME "Old_name" TO "New_name"
RENAME "Dirl<RWpass>/F1l<MGRpass:" TO "DirZ2<RWpass:/F1"
RENAME "THIS:REMOTE" TO "THAT"

new remote file
specifier

RENAME

new directory
specifier

Semantics

RENAME can be used to change the name of remote files and directories or to move files within the
directory structure. Directories cannot be moved with RENAME. Moving of files must occur within a
single volume. If you move a file with RENAME, the original file (“‘old remote file specifier’’) is
purged.

A maximum of nine names (file or directory) are allowed in the combined file/directory specifiers in
the RENAME statement. No more than six names are allowed in either specifier individually. (The
number of names in the old file/directory specifier plus the number of names in the new file/
directory specifier must not exceed nine.)

Files and directories must be closed before being renamed. Remote files are closed by
ASSIGN...TO * (explicitly closes an 1/O path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by
(RESET). The current working directory is closed by an MSI to a different directory.

Existing passwords are retained by the renamed file or directory. The new file name must not
duplicate the name of any existing file in the destination directory.

RE-SAVE

With SRM, RE-SAVE creates a remote ASCII file and copies program lines as strings into that file.

Example Statements

RE-SAVE "File"
RE-SAVE "Dir<RWrpass:/File<RWpass:"

Semantics

RE-SAVE opens the remote file in exclusive mode (denoted as Lock in a CAT listing) and enforces
that status on the file until the RE-SAVE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the RE-SAVE.

If the file does not already exist, RE-SAVE performs the same action as SAVE. Including a pass-
word in the RE-SAVE statement’s remote file specifier does not protect the file. Passwords are
assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-SAVE is performed on the file. If you
specify the wrong password on a protected file, the system returns an error message.

Use of RE-SAVE on SRM may leave temporary files on the mass storage media if (CLR /0) or (RESET)
is pressed or a TIMEOUT occurs during the RE-SAVE. The file name of the temporary file is a
10-character name (the first is an alpha character, others are digits) derived from the value of the
workstation’s real-time clock when the interruption occurred. You may wish to check the contents
of any such file before purging.

509

510

RESET

With SRM; this statement resets the pointers of a remote file identified by an /O path name (see
ASSIGN).

(Reser)—~(@) “rehe™

Example Statement
RESET RBRemote_file

RE-STORE

With SRM, RE-STORE creates a remote file and stores the BASIC program or typing-aid key
definitions in that file.

Example Statements

RE-STORE "Prog.a"

RE-STORE "Dir<RWpass»/Prod_z<RWpass:"
RE-STORE KEY "KEYS:REMOTE"

RE-STORE KEY “TYPING"

Semantics
RE-STORE creates a remote PROG file, and RE-STORE KEY creates a remote BDAT file.

RE-STORE opens the remote file in exclusive mode (denoted as Lock in a CAT listing) and enforces
that status on the file until the RE-STORE is complete. While in exclusive mode, the file is inaccessi-
ble to all SRM workstations other than the one executing the RE-STORE.

If the file does not already exist, RE-STORE performs the same action as STORE. Including a
password in the RE-STORE statement’s remote file specifier does not protect the file. Passwords
are assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-STORE is performed on the file. If
you specify the wrong password on a protected file, the system returns an error message.

Use of RE-STORE on SRM may leave temporary files on the mass storage media if or
is pressed or a TIMEOUT occurs during the RE-STORE. The file name of the temporary file
is a 10-character name (the first is an alpha character, others are digits) derived from the value of
the workstation’s real-time clock when the interruption occurred. You may wish to check the
contents of any such file before purging.

511

512

SAVE

With SRM, SAVE creates a remote ASCII file and copies program lines as strings into the file.

Example Statements
SAVE "THE_WHALES"
SAVE "Dir<RWpass:/File"
SAVE "Ascii_file:REMOTE"

Semantics

SAVE opens the remote file in exclusive mode (denoted as Lock in a CAT listing) and enforces that
status on the file until the SAVE is complete. While in exclusive mode, the file is inaccessible to all
SRM workstations other than the one executing the SAVE.

Including a password in the SAVE statement’s remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

SCRATCH A

With SRM, SCRATCH A releases the system resources allocated to the workstation executing the
SCRATCH A, making those resources available to other SRM workstations. SCRATCH A closes all
files and directories, and resets the workstation’s working directory to the default msus (the mass
storage unit from which the workstation booted).

If the workstation has Boot ROM version 3.0 or later, and booted from the SRM, SCRATCH A
resets the working directory to the root of the default system volume. If the workstation has an
earlier version boot ROM or Boot ROM 3.0L, SCRATCH A resets the working directory to the
device from which the workstation booted (for example, :INTERNAL if the workstation booted
from a built-in drive).

513

514

STATUS

With SRM, STATUS returns the contents of /O path name status registers (see ASSIGN). Refer
to the STATUS keyword entry in the body of this manual for a full explanation of STATUS
syntax. Status registers are listed in the “I/O Path Status and Control Registers’ table in the

Interface Registers section of this manual.
'.

name

h \
STATUS 170 pat -(;
register
number

Example Statement
STATUS BFilesSiRecard

STORE

With SRM, STORE creates a remote file and stores a program or typing-aid key definitions into it.

Example Statements

STORE "Prog32"

STORE "Dir<RWpass»/Prodram"
STORE KEY "KEYS:REMOTE"

STORE KEY "/USERS/KRIS/TYPING"

Semantics
STORE creates a remote PROG file, and STORE KEY creates a remote BDAT file.

STORE opens the remote file in exclusive mode (denoted as Lock in a CAT listing) and enforces
that status on the file until the STORE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the STORE.

Including a password in the STORE statement’s remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

515

516

STORE SYSTEM

With SRM, STORE SYSTEM stores the entire BASIC operating system currently in memory
(including any BIN files) into the specified remote file.

Example Statements

STORE SYSTEM "S¥STEM.B1:REMOTE"
STORE SYSTEM "/SYSTEMS/SYSTEM_NEW"

Semantics

Including a password in the STORE SYSTEM statement’s remote file specifier does not protect the
file. Passwords are assigned only with PROTECT. You do not receive an error for including a
password with the remote file specifier, but the system ignores the password.

The READ access capability on the system file created with STORE SYSTEM must be public to
allow use of the file for booting.

517

SYSTEMS$

With SRM, this function returns a string containing system status and configuration information.

CED R0 SN0

literal form of type of information:

O~ T DO~

PRINTER IS

Example Statement

SYSTEM$("MSI")
SYSTEM$("PRINTER IS")
SYSTEM$("PLOTTER IS")

Semantics

The system configuration information returned when SYSTEMS is executed on SRM includes the
full remote file specifier describing the file or directory about which the information is requested.
Passwords in the specifier are not included.

The system remembers a maximum of 160 characters for any one specifier. If a specifier contains
more than 160 characters, the excess characters are removed from the beginning of the specifier
and are not retained. An asterisk (*) as the leftmost character in the specifier indicates that leading
characters were truncated for the function.

518

TRANSFER

With SRM, this statement initiates unformatted data transfers between the workstation and
remote mass storage devices. Either the source or destination of the transfer is specified as an
/O path name assigned to a remote BDAT file (see ASSIGN). Refer to the TRANSFER
keyword entry in the body of this manual for a full explanation of TRANSFER syntax.

Example Statements

TRANSFER @Buffer TO BFile3sCONT

TRANSFER BDir_Path TO BDestimationiCOUNT 236
TRANSFER @Source TO @BufferiDELIM "/

TRANSFER @Path TO @BufferiRECORDS 12Z,EOR(COUNT B)

Semantics

TRANSFER behaves the same on SRM as with local mass storage, except that inbound and
outbound transfer execution is not overlapped. Whereas the discs on the SRM may be cabable of
overlapped operation, the SRM system performs TRANSFERs serially. This difference only matters
in applications, such as data logging, where you may want a program to be able to execute other
statements before the transfer has completed. For further details, refer to the *‘Transfer Perform-
ance”’ section in the ‘‘Advanced Transfer Techniques’’ chapter of the BASIC Interfacing Techni-
ques manual.

UNLOCK

Option Required SRM,DCOMM
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement is used to remove exclusive access (placed by the LOCK statement) to a remote file
identified by an I/O path name (see ASSIGN).

Item | Description/Default | Range Restrictions
I/O path name name identifying an [/O path to a remote file any valid name (See
Glossary.)

Example Statements

UNLDCK BFile
IF Done THEN UNLOCK @File

Semantics

This statement unlocks a file previously locked with the LOCK statement. While a file is locked,
other SRM workstations cannot access the file. After UNLOCK, other users may access the file
provided they possess the proper access capability (or capabilities).

If multiple LOCKs were executed on the file, the same number of UNLOCKs must be executed to
unlock the file.

UNLOCK is performed automatically by SCRATCH A, and ASSIGN...TO * (explicit closing
of an I/O path).

519

520

450
451
453
454
455
456
457
458
459
460
461
462
465
466
481
482
483
484
485

SRM BASIC Error Codes
for HP Series 200/300 Computers

Volume not found

Volume labels do not match

File is use

Directory formats do not match
Possibly corrupt file
Unsupported directory operation
Passwords not supported
Unsupported directory format
Specified file is not a directory
Directory not empty

Duplicate passwords not allowed
Invalid password

Invalid rename across volumes
Duplicate volume entries

File locked or open exclusively
Cannot move a directory via a RENAME
System down

Password not found

Invalid volume copy

Glossary

angle mode The current units used for expressing angles. Either degrees or radians may be
specified, using the DEG or RAD statements, respectively. The default at power-on and
SCRATCH A is radians.

A subprogram ‘“‘inherits”’ the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

array A structured data type that can be of type REAL, INTEGER, or string. Arrays are
created with the DIM, REAL, INTEGER, ALLOCATE, or COM statements. Arrays have 1 to
6 dimensions; each dimension is allowed 32 767 elements. The lower and upper bounds for
each dimension must fall in the range —32 767 (—32 768 for ALLOCATE) thru + 32 767,
and the lower bound must not exceed the upper bound. The default lower bound is the
OPTION BASE value; the OPTION BASE statement can be used to specify 0 or 1 as the
default lower bound. The default OPTION BASE in every environment is zero.

Each element in a string array is a string whose maximum length is specified in the declaring
statement. The declared length of a string must be in the range 1 thru 32 767.

To specify an entire array, the characters (#) are placed after the array name. To specify a
single element of an array, subscripts are placed in parentheses after the array name. Each
subscript must not be less than the current lower bound or greater than the current upper
bound of the corresponding dimension.

subscript

If an array is not explicitly dimensioned, it is implicitly given the number of dimensions used
in its first occurrence, with an upper bound of 10. Undeclared strings have a default length
of 18.

ASCII This is the acronym for ‘‘American Standard Code for Information Interchange”. Itis a
commonly used code for representing letters, numerals, punctuation, special characters,
and control characters. A table of the characters in the ASCII set and their code values can
be found in the back of this manual.

521

522 Glossary

bit This term comes from the words *‘binary digit”’. A bit is a single digit in base 2 that must be
eithera 1 ora 0.

byte A group of eight bits processed as a unit,
command A statement that can be typed on the input line and executed (see ‘‘statement’’).

context An instance of an environment. A context consists of a specific instance of all data
types and system parameters that may be accessed by a program at a specific point in its
execution. Context changes occur when subprograms are invoked or exited.

device selector A numeric expression used to specify the source or destination of an I/O
operation. A device selector can be either an interface select code or a combination of an
interface select code and a primary address. To construct a device selector with a primary
address, multiply the interface select code by 100 and add the primary address.

Secondary addresses may be appended after a primary address by multiplying the device
selector by 100 and adding the address. This may be repeated up to 6 times, adding a new
secondary address each time. A device selector, once rounded, may contain a maximum of
15 digits.

When a device selector contains an odd number of digits, the leftmost digit is the interface
select code. For an even number of digits, the leftmost two digits are the interface select
code. For example, 70502 selects interface 7, primary address 05, and secondary address
02. Device selector 1516 selects interface 15 and primary address 16.

directory name A directory name (Shared Resource Management) is the same as a remote
file name because a directory is a type of remote file. Directory names consist of from one to
16 characters, including uppercase and lowercase letters, the digits O through 9, the under-
bar (_) character, the period (.) character, and ASCII characters decimal 161 through 254.

Glossary

dyadic operator An operator that performs its operation with two expressions. It is placed
between the two expressions. The following dyadic operators are available:

Operator | Operation

+ REAL or INTEGER addition
- REAL or INTEGER subtraction
REAL or INTEGER multiplication

/ REAL division

Exponentiation

& String concatenation
DIV Gives the integer quotient of a division
MOD Gives the remainder of a division

MODULO Gives the modulo of a division

= Comparison for equality

- Comparison for inequality
Comparison for less than
Comparison for greater than
Comparison for less than or equal to
Comparison for greater than or equal to

AN Logical AND (Boolean >)
or Logical inclusive OR {Boolean <)
EXOR Logical exclusive OR (Boolean <)

file name A file name consists of one to ten characters. Series 200/300 file names can contain
uppercase letters, lowercase letters, numerals, the underbar (_), and CHR$(161) thru
CHR$(254). LIF-compatible file names can contain only uppercase letters and numerals.

The first character in a LIF-compatible file name must be a letter. (See ‘‘remote file name”
for SRM.)

function A procedural call that returns a value. The call can be to a user-defined-function
subprogram (such as FNInvert) or a machine-resident function (such as COS or EXP). The
value returned by the function is used in place of the function call when evaluating the
expression containing the function call.

graphic display unit This is 1/100 of the shortest axis on the plotting device. Graphic display
units are the same size on both the X and Y axes. Abbreviated “GDU”".

hard clip limits These are the physical limits of the plotting device.

523

524 Glossary

hierarchy When a numeric or string expression contains more than one operation, the order
of operations is determined by a precedence system. Operations with the highest prece-
dence are performed first. Multiple operations with the same precedence are performed left
to right. The following tables show the hierarchy for numeric and string operations.

Math Hierarchy

Precedence Operator

Highest Parentheses: (may be used to force any order of operations)
Functions: user-defined and machine-resident
Exponentiation: ~

Multiplication and division: # 7 HMOD DIY HMODULO
Addition, subtraction. monadic plus and minus: + -
Relational operators: = < < » 4= =

NOT

AND

Lowest OR EXOR

String Hierarchy

Precedence Operator

Highest Parentheses

Functions (user-defined and machine-resident) and substring operations

Lowest Concatenation: &

I/O path A combination of firmware and hardware that can be used during the transfer of
data to and from a BASIC program. Associated with an /O path is a unique data type that
describes the I/O path. This association table uses about 200 bytes and is referenced when
an [/O path name is used. For further details, see the ASSIGN statement.

INTEGER A numeric data type stored internally in two bytes. Two’s-complement representa-
tion is used, giving a range of —32 768 thru +32 767. If a numeric variable is not explicitly
declared as an INTEGER, it is a REAL.

integer A number with no fractional part; a whole number.

Glossary 525

interface select code A numeric expression that selects an interface for an I/O operation.
Interface select codes 1 thru 7 are reserved for internal interfaces. Interface select codes 8
thru 31 are used for external interfaces. The internal HP-IB interface with select code 7 can
be specified in statements that are restricted to external devices. (Also see ‘‘device
selector’’.)

keyword A group of uppercase ASCII letters that has a predefined meaning to the computer.
Keywords may be typed using all lowercase or all uppercase letters.

LIF This is the acronym for ‘‘Logical Interchange Format”. This HP standard defines the
format of mass storage files and directories. It allows the interchange of data between
different machines. Series 200/300 files of type ASCII are LIF compatable. See ‘‘file name”’
for file name restrictions.

literal This is a string constant. When quote marks are used to delimit a literal, those quote
marks are not part of the literal. To include a quote mark in a literal, type two consecutive
quote marks (except in response to a LINPUT statement). The drawings showing literal
forms of specifiers (such as file specifiers) show the quote marks required to delimit the
literal.

logical pen See “‘pen”.

monadic operator An operator that performs its operation with one expression. It is placed in
front of the expression. The following monadic operators are available:

Operator I Operation

- Reverses the sign of an expression
+ Identity operator
NOT Logical complement (Boolean over-bar)

msus This is the acronym for ‘“‘mass storage unit specifier’. It is a string expression that
specifies a device to be used for mass storage operations.

name A name consists of one to fifteen characters. The first character must be an uppercase
ASCII letter or one of the characters from CHR$(161) thru CHR$(254). The remaining
characters, if any, can be lowercase ASCII letters, numerals, the underbar (_), or
CHR$(161) thru CHR$(254). Names may be typed using any combination of uppercase
and lowercase letters, unless the name uses the same letters as a keyword. Conflicts with
keywords are resolved by mixing the letter case in the name. (Also see ‘‘file name”’.)

node address An integer from 0 through 63 that identifies an SRM device (such as a worksta-
tion or controller).

526 Glossary

numeric expression

s

o . | numeric |

| expression |
monadic
cperator

numeric dyadic
expression operator

numeric .
constant

numeric
name T

subscript

numeric function)
keyword {
®

numeric
FN

'(jfunction namef
parameter

string comparison string |
expression operataor expression |

. (numeric)
expression

Item

Glossary

Description

monadic operator

dyadic operator

numeric constant

numeric name

subscript

numeric function keyword

numeric function name

parameter

comparison operator

password Passwords are used to protect access to remote (SRM) files and directories. Pass-
words consist of one to 16 characters. All ASCII characters except ‘>’ are allowed. Pass-
words are assigned by the PROTECT statement in BASIC or the Pascal Filer's Access

command.

pen All graphical objects are ‘‘drawn’’ using mathematical representations in the computer’s
memory. This is done with the ‘‘logical pen”. The logical pen creates five classes of objects:
lines, polygons, labels, axes, and label locations (label locations are actually the position of

An operator that performs its operation on the expression im-
mediately to its right: + - NOT

An operator that performs its operation on the two expressions it is
between: * ¥ / MOD DIV + - = <% 4 3 <= &=
AND OR EXOR HMODULO

A numeric quantity whose value is expressed using numerals,
decimal point, and exponent notation

The name of a numeric variable or the name of a numeric array
from which an element is extracted using subscripts

A numeric expression used to select an element of an array (see
¢ ‘array) ’)

A keyword that invokes a machine-resident function that returns
a numeric value

The name of a user-defined function that returns a numeric value

A numeric expression, string expression, or /O path name that is
passed to a function

An operator which returns a 1 (true) or a O (false) based on the
the result of a relational test of the operands it separates:

5= = =

an object, rather than an object).

Before these objects can be viewed, they are acted upon by various transformation mat-
rixes, such as scaling and pivoting. No single transformation affects all the objects, and no

object is effected by all the transformations.

The output of the transformations is used to control the “‘physical pen”. The physical pen
creates the image that you actually see on the plotter or CRT. Since the graphics statements
used to create objects act directly upon the logical pen, and you can see only the output of
the physical pen, the location of the logical pen may not always be readily discernable from

what you see.

527

528 Glossary

The following table shows which transformations act upon which objects.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X Note 4
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1. The starting point for labels drawn after lines or axes Is affected by scaling
Note 2. The starting poirt for labels drawn after other labels is affected by LDIR
Note 3 The starting poirt for labels drawn after lines or axes is affected by PIVOT
Note 4 RPLOT and IPLOT are affected by PDIR

primary address A numeric expession in the range of 0 thru 31 that specifies an individual
device on an interface which is capable of servicing more than one device. The HP-IB
interface can service multiple devices. (Also see ‘‘device selector’’.)

program line A statement that is preceded by a line number (and an optional line label) and
stored with the (ENTER) key into a program (see ‘‘statement’’).

protect code This is a non-listable, two-character code kept with a file description in the
directory of a mass storage media. It guards against accidental changes to an individual file.
When protect codes are specified, they may contain any number of characters. Blanks are
trimmed from protect codes. When the result contains more than two characters, the first
two are used as the actual protect code. A protect code that is the null string (or all blanks) is
interpreted as no protect code. The character * is not allowed in a protect code.

REAL A numeric data type that is stored internally in eight bytes using sign-and-magnitude
binary representation. One bit is used for the number’s sign, 11 bits for a biased exponent
(bias = 1023). and 52 bits for a mantissa. On all values except 0, there is an implied 1.
preceding the mantissa (this can be thought of as the 53rd bit). The range of REAL numbers
is approximately:

-1.797 693 134 862 32 E + 308 thru —2.225 073 858 507 2 E- 308, 0, and
+2.225 073 858 507 2 E — 308 thru +1.797 693 134 862 32 E + 308.

If a numeric variable is not explicitly declared as an INTEGER. it is a REAL.

record The records referred to in this manual are defined records. Defined records are the
smallest unit of storage directly accessible on the mass storage media. The length of a record
is determined when a BDAT file is created by a CREATE BDAT statement. All records in a
file are the same size.

There is another type of record called a “‘physical record” which is the unit of storage
handled by the mass storage device and the operating system. Physical records contain 256

bytes and are not accessible to the user via standard BASIC statements.

recursive See ‘‘recursive’’.

Glossary

remote file name A remote (SRM) file name consists of one to 16 characters. HP Series
200/300 remote file names can contain uppercase and lowercase letters, the digits O
through 9, the underbar (_) character, the period (.) character, and ASCII characters
decimal 161 through 254.

secondary address A device-dependent command sent on HP-IB. It can be interpreted as a
secondary address for the extended talker/listener functions or as part of a command
sequence. (Also see ‘“‘device selector’’.)

selector A numeric quantity used to identify or choose something from a number of possibili-
ties. A selector is ususlly a numeric expression. For example: device selector is used to
identify a device involved in a I/O operation, and pen selector is used to select a pen on a
plotter.

soft clip limits These are plotter clipping limits that are defined by the programmer. Lines
drawn on a plotting device are drawn only inside the clipping limits.

specifier A string used to identify a method for handling an /O operation. A specifier is
usually a string expression. For example: mass storage unit specifier selects the proper
drivers for a mass storage unit, and plotter specifier chooses the protocol of a plotting
device.

SRM The acronym for Shared Resource Management.

SRM controller The HP Series 200/300 computer that controls access to the shared re-
sources of the Shared Resource Management system.

SRM controller’s node address An integer in the range 0 through 63 that identifies the SRM
controller.

SRM interface The term used to describe the HP 98629A Resource Management Interface
resident in an SRM workstation computer (not the interface in the SRM controller).

statement A keyword combined with any additional items that are allowed or required with
that keyword. If a statement is placed after a line number and stored, it becomes a program
line. If a statement is typed without a line number and executed, it is called a command.

529

530 Glossary

string A data type comprised of a contiguous series of characters. Strings require one byte of
memory for each character of declared length, plus a two-byte length header. Characters
are stored using an extended ASCII character set. The first character in a string is in position
1. The maximum length of a string is 32 767 characters. The current length of a string can

never exceed the dimensioned length.

If a string is not explicitly dimensioned, it is implicitly dimensioned to 18 characters. Each

element in an implicitly dimensioned string array is dimensioned to 18 characters.

When a string is empty, it has a current length of zero and is called a *‘null string™. All strings
are null strings when they are declared. A null string can be represented as an empty literal
(for example: A%$="") or as one of three special cases of substring. The substrings that

represent the null string are:

1. Beginning position one greater than current length
2. Ending position one less than beginning position

3. Maximum substring length of zero
string expression

string
expression

string

O

expression

(L [

hone (8

name
beginning
position

i

s

ending
position
substring
length

string function |
keyword r

= FN

string function $
name

string

expression]_’@

Item

Glossary

Description

literal

string name

subscript

beginning position

ending position

substring length

string function keyword

string function name

parameter

A string constant composed of any characters available on the
keyboard, including those generated with the ANY CHAR key.

The name of a string variable or the name of a string array from
which a string is extracted using subscripts

A numeric expression used to select an element of an array (see
uarrayn)

A numeric expression specifying the position of the first character in
a substring (see ‘‘substring’’)

A numeric expression specifying the position of the last character in a
substring {see ‘‘substring’’)

A numeric expression specifying the maximum number of characters
to be included in a substring {see ‘‘substring’’)

A keyword that invokes a machine-resident function which returns a
string value. String function keywords always end with a dollar sign.

The name of a user-defined function that returns a string value

A numeric expression, string expression, or 1/O path name that is

passed to a function

subprogram Can be a CSUB, a SUB subprogram or a user-defined-function subprogram

(DEF FN). The first line in a SUB subprogram is a SUB statement. The last line in a SUB
subprogram (except for comments) is a SUBEND statement. The first line in a function
subprogram is a DEF FN statement. The last line in a function (except for comments) is an
FNEND statement. Subprograms must follow the END statement of the main program.

SUB and CSUB subprograms are invoked by CALL. Function subprograms are invoked by
an FN function occurring in an expression. A function subprogram returns a value that
replaces the occurrence of the FN function when the expression is evaluated. Subprograms
may alter the values of parameters passed by reference or variables in COM. 1t is recom-
mended that you do not let function subprograms alter values in that way.

Invoking a subprogram establishes a new context. The new context remains in existence
until the subprogram is properly exited or program execution is stopped. Subprograms can
be recursive.

subroutine A program segment accessed by a GOSUB statement and ended with a RETURN

statement.

531

532 Glossary

substring
string o beginning
name $ [position

ending
subscript position I >
substring
length

A substring is a contiguous series of characters that comprises all or part of a string. Sub-
strings may be accessed by specifying a beginning position, or a beginning position and an
ending position, or a beginning position and a maximum substring length.

The beginning position must be at least one and no greater than the current length plus one.
When only the beginning position is specified, the substring includes all characters from that
position to the current end of the string.

The ending position must be no less than the beginning position minus one and no greater
than the dimensioned length of the string. When both beginning and ending positions are
specified, the substring includes all characters from the beginning position to the ending
position or current end of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one plus the
dimensioned length of the string minus the beginning position. When a beginning position
and substring length are specified, the substring starts at the beginning position and includes
the number of characters specified by the substring length. If there are not enough charac-
ters available. the substring includes only the characters from the beginning position to the
current end of the string.

volume A named portion of mass storage media, which may contain several files. Disc drives
supported by HP Series 200/300 mass storage operations contain only one volume per disc.

volume name A name used to identify a mass storage volume. The volume name is assigned
to the volume at initialization. Volume names consist of one to 16 characters including
uppercase and lowercase letters, the digits O through 9, the underbar (_) character, the
period (.) character, and ASCII characters decimal 161 through 254.

volume password A “‘master” password, assigned at initialization, that allows complete ac-
cess to all files on a mass storage volume. Volume passwords consist of one to 16 charac-
ters. All ASCII characters except *“>"" are allowed. The volume password supercedes all
access restrictions placed on files by the PROTECT statement in BASIC or the Pascal Filer's
Access command.

Interface Registers

I/O Path Status and Control Registers

Status Register 0

Status Register 1
Status Register 2
Status Register 3

[f assigned to more than one device, the other device selectors are available starting in Status

Register 4.

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Status Register 6

Status Register 1
Status Register 2
Status Register 3
Status Register 4

Status Register 5
Control Register 5

Status Register 6
Control Register 6

Status Register 7
Control Register 7

Status Register 8
Control Register 8

For All I/O Path Names:

Returned
Value Meaning

0 Invalid [/O path name

1 [/O path name assigned to a device
2 /O path name assigned to a data file
3 /O path name assigned to a buffer

I/O Path Names Assigned to a Device:

Interface select code
Number of devices
1st device selector

I/O Path Names Assigned to an ASCII File:

File type = 3

Device selector of mass storage device
Number of records

Bytes per record = 256

Current record

Current byte within record

I/O Path Names Assigned to a BDAT File:

File type = 2

Device selector of mass storage device
Number of defined records

Defined record length (in bytes)

Current record
Set current record

Current byte within record
Set current byte within record

EOF record
Set EOF record

Byte within EOF record
Set byte within EOF record

533

534

Interface Redgisters

I/O Path Names Assigned to a Buffer:

Status Register 1
Status Register 2

Status Register 3
Control Register 3

Status Register 4
Control Register 4

Status Register 5
Control Register 5

Buffer type (1 = named, 2 = unnamed)
Buffer size in bytes

Current fill pointer
Set fill pointer

Current number of bytes in buffer
Set number of bytes

Current empty pointer
Set empty pointer

Interface select code of inbound TRANSFER
Interface select code of outbound TRANSFER

If non-zero, inbound TRANSFER is continuous
Cancel continuous mode inbound TRANSFER if zero

Status Register 6
Status Register 7

Status Register 8
Control Register 8

Status Register 9
Control Register 9

Status Register 10

If non-zero, outbound TRANSFER is continuous
Cancel continuous mode outbound TRANSFER if zero

Termination status for inbound TRANSFER

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 TRANSFER | TRANSFER | TRANSFER Device Byte Record Match
Active Aborted Error Termination Count Count Character
Value = 0 | Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Status Register 11 Termination status for outbound TRANSFER

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANSFER|TRANSFER |TRANSFER Device Byte Record 0
Active Aborted Error Termination Count Count
Value = (| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 Value = 0

Status Register 12
Status Register 13

Total number of bytes transferred by last inbound TRANSFER
Total number of bytes transferred by last outbound TRANSFER

Status Register 0
Control Register 0

Status Register 1
Control Register 1

Status Register 2
Control Register 2

Status Register 3
Control Register 3

Status Register 4
Control Register 4

Status Register 5

Control Register 5

Status Register 6
Control Register 6

Status Register 7
Control Register 7

Interface Registers

CRT Status and Control Registers

Current print position (column)
Set print position (column)

Current print position (line)

Set print position (line)
Insert-character mode

Set insert character mode if non-0

Number of lines ‘‘above screen”’
Undefined

Display functions mode

Set display functions mode if non-0

Returns the CRT alpha color value set (or default). This does not
reflect changes due to printing CHR$ (x), where 136<x=<143.

Set default alpha color:
For Alpha Displays:

Value Result
< 128 Error
128-135 Ignored
136 White
137 Red
138 Yellow
139 Green
140 Cyan
141 Blue
142 Magenta
143 Black
144-159 Ignored
> 159 Error

For Bit-Mapped Displays:
Values 0 thru 255 which correspond to the graphics pens.

For multi-plane bit-mapped displays, the graphics pen to be used for
alpha.

CONTROL CRT,5in sets the values of the CRT registers 15, 16, and 17,
but the converse is not true. That is, STATUS CRT,5 may not accurately
reflect the CRT state if CONTROL 15, 16, and/or 17 have been executed.

ALPHA ON flag
Undefined

GRAPHICS ON flag
Undefined

535

536 Interface Redgisters

CRT Status and Control Registers (cont.)

Status Register 8
Control Register 8

Status Register 9
Control Register 9

Status Register 10
Control Register 10

Status Register 11
Control Register 11

Status Register 12
Control Register 12

Status Register 13
Control Register 13

Status Register 14
Control Register 14

Display line position (column)
Set display line position (column)

Screenwidth (number of characters)
Undefined

Cursor-enable flag
Cursor-enable: 0 = cursor invisible
non-0 = cursor visible

CRT character mapping flag
Disable CRT character mapping if non-0

Key labels display mode
Set key labels display mode: 0 = typing-aid key labels displayed un-
less program is in the RUN state
1 = key labels always off
2 = key labels displayed at all times

CRT height
CRT height; number of lines in Alpha display must be greater than 8.

Display replacement
Display replacement
0-0
1—source AND old
2—source AND NOT old
3—source;default
4-NOT source AND old
5-old
6—source EXOR old
7—source OR old
8—source NOR old
9—source EXNOR old
10-NOT old
11—source OR NOT old
12-NOT source
13-NOT source OR old
14—source NAND old
15-1

Interface Redgisters

CRT Status and Control Registers (cont.)

Status Register 15

Control Register 15

Status Register 16
Control Register 16

Status Register 17

Control Register 17

Status Register 18
Control Register 18
Status Register 19
Control Register 19

Status Register 20
Control Register 20

Status Register 21
Control Register 21

Return the value set (or the default) for the color in the PRINT/DISP

area. This does not reflect changes due to printing CHR$(x), where
136<=x=<143.

Set PRINT/DISP color. Similar to CRT control register 5 but specific to
CRT PRINT/DISP areas; that is, it does not affect the areas covered by
CRT registers 16 and 17.

Return the value set (or the default) for the softkey label color.

Set key labels color. Similar to CRT control register 5 but only affects
the softkey labels. Does not affect the areas covered by CRT registers
15 and 17.

Return the value set (or the default) for the color of the ‘‘non-
enhance’” area. This includes the keyboard entry line, runlight, system
message line, annunciators, and edit screen.

Set “‘non-enhance’’ color. This includes the keyboard entry line, run-
light, system message line, annunciators, and edit screen. Similar to
CRT control register 5 but does not affect the areas covered by CRT
control registers 15 and 16.

Read the alpha write-enable mask.

Set alpha write-enable mask to a bit pattern.
Return number of planes in alpha CRT.
Undefined.

Read the alpha display-enable mask.
Set alpha display-enable mask to a bit pattern.

Return compatibility mode (0 or 1).

Switch between the CRT compatibility mode (value #0) and the na-
tive bit-mapped mode (value=0). That is, switch both alpha and
graphics to non-bit-mapped display (if value # 0) or bit-mapped dis-
play (if value=0). It effectively initializes the alpha display and ex-
ecutes a GINIT and a PLOTTER IS CRT " INTERNAL".

537

538

Interface Registers

Keyboard Status and Control Registers

Status Register 0
Control Register 0

Status Register 1
Control Register 1

Status Register 2
Control Register 2

Status Register 3

Control Register 3

Status Register 4

Control Register 4

Status Register 5

Control Register 5
Status Register 6

CAPS LOCK flag
Set CAPS LOCK if non-0

PRINTALL flag
Set PRINTALL if non-0

Function key menu.
Function key menu. 0 = System menu

1-3 = User menu 1 thru 3
Undefined

Set auto-repeat interval: If 1 thru 255, repeat rate in milliseconds is 10
times this value. 256 = turn off auto-repeat. (Default at power-on or
SCRATCH A is 80 ms.)

Undefined

Set delay before auto-repeat. If 1 thru 256. delay in milliseconds is 10
times this value. (Default at power-on or SCRATCH A is 700 ms.)

KBD$ buffer overflow register. 1 = overflow.
Register is reset when read.

Undefined

Typing aid expansion overflow register.
1 = overflow. Register is reset when read.

Control Register 6 Undefined
Status Register 7 Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
IN;E@';LZtE Reserved | Reserved R}E(iET ngb}g:rg
0 0 0 For Future | For Future Y a 0
Interrupt Use Use Interrupt Interrupt
Disabled Disabled Disabled
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 7 (Set bit to disable) Interrupt Disable Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved | Reserved
Not Used IN'.TIALIZE For Future | For Future RESET Keyboard
Timeout Key and Knob
Use Use
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Interface Redgisters

Keyboard Status and Control Registers (cont.)
Status Register 8

Keyboard language jumper

0 - US ASCII 7 — United Kingdom 13 — Swiss German
1 - French 8 — Canadian French 14 — Latin(Spanish)
2 — German 9 — Swiss French 15 — Danish
3 — Swedish 10 — Italian 16 — Finnish
4 — Spanish 11 — Belgian 17 — Norwegian
5 — Katakana 12 — Dutch 18 — Swiss French*
6 — Canadian English 19 — Swiss German*
Control Register 8 Undefined
Status Register 9
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1=HP46020A|1=No 1=n-Key 1=HP98203A
Internal Internal Keyboard Keyboard Rollover 0 0 Keyboard
Use Use 0="0COther 0=Keyboard |0=2 or less 0=COther
Keyboard Present Key Rollover| Keyboard
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 9 Undefined
Status Register 10 State at Last Knob Interrupt
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CTRL SHIFT
0 0 0 0 0 0 Key Key
Pressed Pressed
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

539

540 Interface Registers

Keyboard Status and Control Registers (cont.)

Control Register 10
Status Register 11
Control Register 11

Status Register 12
Control Register 12

Status Register 13
Control Register 13

Status Register 14
Control Register 14

Status Register 15

Control Register 15

Undefined
0 = horizontal-pulse mode; 1 =all-pulse mode

(default is 0 without KNB2_0 loaded, 1 with KNB2_0 loaded). Refer
to the Knob section in Chapter 15 of the BASIC Programming Tech-
niques manual for more information.

“Pseudo-EOI forCTRL-E” flag
Enable pseudo-EOI for CTRL-E if non-0

Katakana flag
Set Katakana if non-0

Function keys on HP 46020A software key numbers shifted.
Function keys on HP 46020A software key numbers shifted.
0= is Key 1; default

1= is Key 0

Return keyboard compatibility mode (0—off, 1—-on).
Turns Model 236 keyboard compatibility mode on (#0) and off (=0).

(See the chapter ‘‘Porting to Series 300" in the Programming Techni-
ques manual.)

Interface Registers

HP-IB Status and Control Registers

Status Register 0

Control Register 0

Status Register 1

Card identification

1

Reset interface if non-zero

Interrupt and DMA Status

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
DMA DMA
MHOTIUPIS | mierrupt Flardwars Imerupt 0 0 Channel 1 | Channel 0
q evel Switches Enabled | Enabled
Value = 128/ Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 1 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ
Dependent | 1 = | did it Device Dependent Status
Status 0 = I didn't
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1
Status Register 2 Busy Bits
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved |Handshake Interruots TRANSFER
0 0 0 0 For Future In P In
Enabled
Use Progress Progress
Value = 128| Value = 64 | Value = 32 | Value - 16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 2 Parallel Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True = True
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

541

542

Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 3
Most Significant Bit

Controller Status and Address
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1
Control Register 3 Set My Addrress
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Primary Address
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value=1
Status Register 4 Interrupt Status
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel My Talk My Listen Remote/ Talker/
Active Poll EOI Listener
. . Address Address . SPAS Local
Controller |Configuration) . Received Address
Received Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8 192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger | Handshake €09 Command Clear 9 SRQ IFC
> Universal . . Addressed))
Received Error While Received Received Received
Command Command
Addressed
Value = 128] Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1
Control Register 4 Writing anything to this register releases NDAC holdoff. If non-zero,

accept last secondary address as valid. If zero, don’t accept last secon-
dary address (stay in LPAS or TPAS state).

Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 5
Most Significant Bit

Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
; Parallel My Talk My Listen Remote/ Talker/
Active Poll EOQI Listener
) . Address Address . SPAS Local
Controller |Configuration . . Received Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8 192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger | Handshake cog Command Clear 9 SRQ IFC
: Universal . . Addressed . .
Received Error While Received Received Received
Command Command
Addressed
Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 5 Parallel Poll Response Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Uncon- Logic Data Bit Used
Used figure Sense For Response
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

544

Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 6
Most Significant Bit

Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS TPAS LADS TADS *
True
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8 192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
* Least-significant bit of last address recognized
Status Register 7 Bus Control and Data Lines
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DiO2 DIO1
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Interface Registers

HP-IB Status and Control Registers (cont.)

Interrupt Enable Register (ENABLE INTR)

Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel |\ Taik | My Listen Remote/ | . aiKer/
Active Poll EOI Listener
) . Address Address . SPAS Local
Controller |Configuration . . Received Address
Received Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8 192 4 096 2 048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
. Secondary .
Trigger | Handshake Unregogmzed Command Clear Unrecognized SRQ IFC
- Universal . . Addressed .)
Received Error While Received Received Received
Command Command
Addressed
Value = 128! Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

545

546

Interface Registers

RS-232 Status and Control Registers

Card Identification

Status Register 0
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 = Future
Use Jumper 0 0 0 0 0 1 0
Installed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4 | Value=2 | Value = 1

Control Register 0 Reset interface if non-zero
Interrupt Status

Status Register 1
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts Interrupt Hardware Interrupt 0 0 0 0
Enabled | Requested Level Switches
Value = 128| Value = 64 | Value = 32 | Value =16 | Value =8 | Value =4 | Value=2 | Value = 1

Control Register 1 Send break if non-zero

Status Register 2
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake Interrupts TRANSFER
0 0 0 0 0 In P In
Enabled
Progress Progress

Value =2 | Value =1

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4

Control Register 2 Undefined

Status Register 3 Baud Rate
Control Register 3 Set Baud Rate

Interface Registers

RS-232 Status and Control Registers (cont.)

Status Register 4 Character Control
Most Significant Bit . Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

00 = Odd Parity 0 = One
Reserved for 01 = Even Parity Parity Stop Bit Character Length
Future Use 10 = Parity Bit “1” Enabled 1 = Two {add this value to 5)
11 = Parity Bit “0” Stop Bits*
Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

*1.5 stop bit if character length is 5.

Control Register 4 Character Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

00 = Odd parity 0 = One
Not Used 01 = Even Parity 1 = Enable | Stop Bit Character Length
10 = Parity Bit *“1” parity 1 = Two (add this value to 5)
11 = Parity Bit “0” Stop Bits*
Value = 128 Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

*1.5 stop bits if character length is 5.

Status Register 5 Modem Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Loop Secondary Data Request Data
0 0 0 Back Request Rate To Terminal
Mode To Send Select Send Ready
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 5 Modem Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 = Set RTS* DTR**
1 = Set 1 = Set _ _
Not Used Loopback Sscondary Data Rate 1= _Set 1= _Set
Mode equest Select 0= 0=
To Send Handshake |Handshake
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

* 0 = Set only during an OUTPUT statement.
** 0 = Set only during an OUTPUT or ENTER statement.

547

Interface Registers

RS-232 Status and Control Registers (cont.)

Status Register 6

Control Register 6

Status Register 7

Data In (8 bits)
Data Out (8 bits)

Optional Circuits

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 Optional Optional Optional Optional
Driver 3 Driver 4 Receiver 2 | Receiver 3
Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value = 4 | Value =2 | Value = 1
Control Register 7 Optional Circuits
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Optional Optional
Not Used Driver 3 Driver 4 Not Used
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 | Value =2 | Value = 1
Status Register 8 Interrupt Enable Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Modem Receiver Tr:glsdTr:tter Receiver
0 0 0 0 Status Line Re istegr Buffer
Change Status 9 Full
Empty
Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value=8 | Value = 4 | Value =2 | Value = 1
Status Register 9 Interrupt Cause
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
11 = Receiver Line Status
10 = Receiver Buffer Full 0 = UART
0 0 0 0 0 01 = Transmitter Holding Requesting
Register Empty Interrupt
00 = Modem Status Change
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value =2 | Value = 1

Interface Registers 549

RS-232 Status and Control Registers (cont.)
UART Status

Least Significant Bit

Status Register 10
Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Transmit .
Shift Holding Break Framing Parity Overrun Receiver
0 . -) Buffer
Register Register Received Error Error Error Full
Empty Empty
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 11 Modem Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Change In Ring Change In | Change In
Carrier Ring Data Set Clear To Carri Indicator
Detect Indicator Ready Send arner Changed Data Set Clear
Detect Ready To Send
To False
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 12 Modem Handshake Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier Data Set Clear to
Detect 0 Ready Send 0 0 0 0
Disable* Disable** | Disable***
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

0 = Wait for Carrier Detect on Enter Operations; 1 = Don't wait
0 = Wait for Data Set Ready on Enter and Output Operations: 1 = Don't wait

0 = Wait for Clear to Send on Output Operations; 1 = Don't wait

550 Interface Registers

RS-232 Status and Control Registers (cont.)

Control Register 12 Modem Handshake Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier Not Data Set Clear to Not Not Not Not
Detect Used Ready Send Used Used Used Used
Disable* Disable** | Disable*** € se
Value = 128| Value = 64 | Value - 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value = 1

0 = Wait for Carner Detect on Enter Operations. 1 - Don't wait
0 - Wait for Data Set Ready on Enter and Output Operations. 1 - Don't wait
0 = Wait for Clear to Send on Output Operations. 1 = Don't wart

Interrupt Enable Register (ENABLE INTR)

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Modem Receiver Traglsdr?r:tter Receiver
Not Used Status Line Re istgr Buffer
Change Status 9 Full
Empty
Value = 128| Value = 64 | Value = 32 { Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Status Register 13 Read the 5CRATCH A default baud rate. The interface is set to
this default when SCRATCH A occurs.
Control Register 13 Set the scrATCH A default baud rate. The values accepted are

the same as for CONTROL/STATUS register 3. The default pow-
er-up value is 9600 baud.

Status Register 14 Read the SCRATCH A default character format. The interface is
set to this default when SCRATCH A occurs.
Control Register 14 Set the “SCRATCH A’ default character format. The values

accepted are the same as for CONTROL/STATUS register 4. The
default values are: 8 bits/character, 1 stop bit, no parity.

Interface Registers

GPIO Status and Control Registers

Status Register 0 Card identification = 3.
Control Register 0 Reset interface if non-zero
Status Register 1) Interrupt and DMA Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Burst- Word- DMA DMA
e tna a DMA DMA Enabled | Enabled

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 1 Set PCTL if non-zero

Status Register 2

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake Interrupts TRANSFER
0 0 0 ° 0 In Are Enabled In
Process Progress
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 2

Peripheral Control
Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
"STS | setcTLt | SetCTLo
Not Used (1 = Report: (1 = Low; | (1 = Low;
0 = Ignore) 0 = High) = High)

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

Status Register 3 Data In (16 bits)
Control Register 3 Data Out (16 bits)
Status Register 4 Interface is Ready for a subsequent data transfer;

1 = Ready, 0 = Busy.

551

Interface Registers

GPIO Status and Control Registers (cont.)

Status Register 5
Most Signiticant Bit

Peripheral Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR ST STIO
OK Line Low Line Low Line Low
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Interrupt Enable Register (ENABLE INTR)
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable
Interface Enable
Not Used Ready EIR
Interrupts | Interrupts
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value =4 | Value=2 | Value =1

Interface Registers 553

BCD Status and Control Registers

Status Register 0 Card Identification = 4.
Control Register 0 Reset Interface (if non-zero value sent).

Interrupt Status

Status Register 1
Least Significant Bit

Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts Interrupt Hardware Interrupt
Are Requested Level Switch 0 0 0 0
Enabled qu e witches
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 1 Reset driver pointer (if non-zero value sent).

Busy Bit

Least Significant Bit

Status Register 2
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake Interrupts
0 0 0 0 0 In 0
Progress Enabled

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 2 Request data by Setting CTLA and CTLB (if a non-zero value is sent);
this operation also clears an Interrupt Request (clears bit 6 of Status

Register 1).
Status Register 3 Binary Mode: 1 if the interface is currently operating in Binary mode,
and O if in BCD mode.

Control Register 3 Set Binary Mode: set Binary Mode if non-zero value sent, and BCD
Mode if zero sent.

Interface Registers

BCD Status and Control Registers (cont.)

Status Register 4
Most Significant Bit

Switch and Line States
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OF DATA SGN1 SGN2 OovLD SGN1 SGN2 OVLD
Switch Switch Switch Switch Switch Input Input Input
Is ON Is ON Is ON Is ON Is ON Is True Is True Is True
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4 | Value=2 | Value =1
Control Register 4 Data Out Lines
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Set Set Set Set Set Set Set
DO-7 DO-6 DO-5 DO-4 DO-3 DO-2 DO-1 DO-0
True True True True True True True True
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1
Status Register 5 BCD Digits D1 and D2
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI1-8 Di1-4 DI1-2 Di1-1 DI2-8 Dl2-4 Di2-2 DI2-1
Is Is Is Is Is Is Is Is
True True True True True True True True
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1
Status Register 6 BCD Digits D3 and D4
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI3-8 DI3-4 DI3-2 DI3-1 Di4-8 Di4-4 Dl4-2 Dli4-1
Is Is Is Is Is Is Is Is
True True True True True True True True
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1

Interface Registers

BCD Status and Control Registers (cont.)

Status Register 7
Most Significant Bit

BCD Digits D5 and D6

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI5-8 DI5-4 DI5-2 DI5-1 Di6-8 Dl6-4 Dl6-2 DI6-1
Is Is Is Is Is Is Is Is
True True True True True True True True
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 8 BCD Digits D7 and D8
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI7-8 DI7-4 DI7-2 DI7-1 DI8-8 DiI8-4 DI8-2 DI8-1
Is Is Is Is Is Is Is Is
True True True True True True True True
Value = 128 Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 9 BCD Digits D9 and D10
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI9-8 DI9-4 DI9-2 DI19-1 DI10-8 DI10-4 DI10-2 DI10-1
Is Is Is Is Is Is Is Is
True True True True True True True True
Value = 128| Value = 64 | Value = 32 { Value =16 | Value=8 | Value=4 | Value=2 | Value=1

555

556

Interface Registers

Data Communications
Status and Control Registers

General Notes: Control registers accept values in the range of zero through 255. Some regis-

Status 0

Control 0

Status 1

Status 2

Status 3

Control 3

Status 4

ters require specified values, as indicated. Illegal values or values less than
zero or greater than 255, cause ERROR 327.

Reset value, shown for various Control Registers, is the default value used by
the interface after a reset or power-up until the value is overridden by a

CONTROL statement.

Card Identification
Value returned: 52 (if 180 is returned, check select code switch cluster and make sure
switch R is ON).

Card Reset

Any value, 1 thru 255, resets the card. Immediate execution. Data in queues is destroyed.

Hardware Interrupt Status (not used in most applications)
1 = Enabled 0 = Disabled

Datacomm Activity

0 = No activity pending on this select code.
Bit 0 set: ENTER in process.

Bit 1 set: OUTPUT in process.

Bit 2 set: inbound TRANSFER in process
Bit 3 set: outbound TRANSFER in process

Current Protocol [dentification:
1 = Async, 2 = Data Link Protocol

Protocol to be used after next card reset (CONTROL Sc0i31)
1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

Cause of ON INTR program branch.

Bit | Function: Async Protocol Function: Data Link Protocol
0 Data and/or Control Block available Data Block Available
1 Prompt received Space available for a new transmis-
sion block
Framing and/or parity error Receive or transmit error
Modem line change Modem line change
No Activity timeout (forces a discon- No Activity timeout (forces a discon-
nect) nect)
5 Lost carrier or connection timeout Lost carrier or connection timeout
(forces a disconnect) (forces a disconnect)
6 End-of-line received Not Used
Break received Not Used

Contents of this register are cleared when a STATUS statement is executed to it.

Status 5

Control 5

Status 6
Control 6

Status 7

Status 8
Control 8

Interface Registers

Datacomm Status and Control Registers (cont.)

Inbound queue status

Value l Interpretation

0 Queue is empty

1 Queue contains data but no control blocks

2 Queue contains one or more control blocks but no data

3 Queue contains both data and one or more control blocks

Terminate Transmission
OUTPUT S4+530 isequivalentto OUTPUT S3SEND

Data Link: Sends previous data as a single block with an ETX terminator, then idles the
line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when line is full-
duplex. The next data OUTPUT automatically regains control of the line by
raising the RTS (request-to-send) modem line.

Break status: 1 =BREAK transmission pending, 0 =no BREAK pending.

Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block, or CN character
instead of data in next outbound block.

Async Protocol: Transmit Break. Length is defined by Control Register 39.
Note that the value sent to the register is arbitrary.

Modem receiver line states (values shown are for male cable connector option for
connection to modems).

Bit 0: Data Mode (Data Set Ready) line

Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line

Bit 3: Incoming call (Ring Indicator line)

Bit 4: Depends on cable option or adapter used

Returns modem driver line states.

Sets modem driver line states (values shown are for male cable connector option
for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 =line set (active)

Bit 1: Data Terminal Ready (DTR) line 0 =line clear (inactive)
Bit 2: Driver 1: Data Rate Select

Bit 3: Driver 2: Depends on cable option or adapter used

Bit 4: Driver 3: Depends on cable option or adapter used

Bit 5: Driver 4: Depends on cable option or adapter used

Bits 6,7: Not used

Reset value =0 prior to connect. Post-connect value is handshake dependent.

Note that RTS line cannot be altered (except by OUTPUT or OUTPUT...END) for half-
duplex modem connections.

557

558 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 9 Returns control block TYPE if last ENTER terminated on a control block. See
Status Register 10 for values.

Status 10 Returns control block MODE if last ENTER terminated on a control block.

Async Protocol Control Blocks

Type Mode |Interpretation
250 1 Break received {Channel A)
251 1! Framing error in the following character
251 2! Parity error in the following character
251 3! Parity and framing errors in the following character
252 1 End-of-line terminator detected
253 1 Prompt received from remote
0 0 No Control Block encountered

Data Link Protocol Control Blocks

Type | Mode |lnterpretation

254 1 Preceding block terminated by ETB character

254 2 Preceding block terminated by ETX character

2537 — (see following table for Mode interpretation)
0 0 No Control Block encountered.

Mode Bit(s) | Interpretation

0 1 = Transparent data in following block
0 = Normal data in following block

2.1 00 = Device select
01 = Group select
10 = Line select

3 1 = Command channel
2 = Data channel

Status 11 Returns available outbound queue space (in bytes), provided there is sufficient
space for at least three control blocks. If not, value is zero.

Control 12 Datacomm Line connection control

Value | Action

0 Disconnect
1 Begin connection sequence
2 Begin autodial sequence

1 Parity/framing error control blocks are not generated when characters with parity and-or framing errors are replaced by an underscore ()
character

2 This type is used primarity in specialized applications.

Interface Registers

Datacomm Status and Control Registers (cont.)

Status 12 Datacomm Line connection status

Value | Interpretation

0 Disconnected
1

2 Dialing

3 Connected!
4 Suspended

5

6

Attempting Connection

Currently receiving data (Data Link only)
Currently transmitting data (Data Link only)

Note

When the datacomm line is suspended, CLEAR, ABORT, or RESET
must be executed before the line can be reconnected.

Reset value — 0 if R on interface select code switch cluster is ON (1).

Status 13 Returns current ON INTR mask

Control 13 Sets ON INTR mask?
Data Link Protocol:

Bit Value | Enables interrupt when:
0 1 A full block is available in receive queue
1 2 Transmit queue is empty
2 4 Receive or transmit error detected
3 8 A modem line changed
4 16° No Activity timeout forced a disconnection
5 323 Lost Carrier or Connection timeout caused a disconnection

Async Protocol:

Bit Value | Enables interrupt when:
0 1 Data or control block available in receive queue
1 2 Prompt received from remote device
2 4 Framing or parity error detected in incoming data
3 8 A modem line changed
4 16° No Activity timeout forced a disconnection
5 32° Lost Carrier or Connection timeout caused a disconnection
6 64 End-of-line received
7 128 Break received

Reset value = 0

1 When using Data Link: Connected - datacomm idle

2 |t a CONTROL statement is used to access this register, the control block is placed in the outbound queue. If the ENABLE INTR... statement is
used with a mask, the mask value is placed directly in the control register, bypassing any queue delays.

3 1f bits 4 and 5 are not set, the corresponding errors can be trapped by using an ON ERROR statement.

559

560 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 14 Returns current Control Block mask.

Control 14 Sets Control Block mask. Control block information is queued sequentially with
incoming data as follows:

Bit | Value | Async Control Block Passed | Data Link Control Block Passed

0 1 Prompt position Transparent/Normal Mode'
1 2 End-of-line position ETX Block Terminator?

2 4 Framing and/or Parity error’ ETB Block Terminator®

3 8 Break received

Reset Value: | 0 (Contro! Blocks disabled) 6 (ETX/ETB Enabled)
Bits 4, 5, 6, and 7 are not used.
Status 15 Returns current modem line interrupt mask.

Control 15 Sets modem line interrupt mask. Enables an interrupt to ON INTR when Bit 3 of
Control Register 13 is set as follows:

Bit Value | Modem Line to Cause Interrupt
0 1 Data Mode (Data Set Ready)
1 2 Receive Ready (Data Carrier Detect)
2 4 Clear-to-send
3 8 OCR1, Incoming Call (Ring Indicator)
4 16 OCR2, Cable or adapter dependent

Reset Value= 0

Note that bit functions are the same as for STATUS register 7. Functions shown are for
male connector cable option for modem connections.

Status 16 Returns current connection timeout limit.

Control 16 Sets Attempted Connection timeout limit.
Acceptable values: 1 thru 255 seconds. 0 =timeout disabled.
Reset Value =25 seconds

Status 17 Returns current No Activity timeout limit.
Control 17 Sets No Activity timeout limit.
Acceptable values: 1 thru 255 minutes. 0= timeout disabled.
Reset Value = 10 minutes (disabled if Async, non-modem handshake).

Status 18 Returns current Lost Carrier timeout limit.

Control 18 Sets Lost Carrier timeout limit in units of 10 ms.
Acceptable values: 1 thru 255. 0 =timeout disabled.
Reset Value=40 (400 milliseconds)

1 Transparent/Normal format identification control block occurs at the BEGINNING of a given block of data in the receive queue.
2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of data in the receive queue.

3 This control block precedes each character containing a parity or framing error.

Interface Registers 561

Datacomm Status and Control Registers (cont.)

Status 19 Returns current Transmit timeout limit.

Control 19 Sets Transmit timeout limit (loss of clock or CTS not returned by modem when transmis-
sion is attempted).
Acceptable values: 1 thru 255.0 = timeout disabled.
Reset Value =10 seconds

Status 20 Returns current transmission speed (baud rate). See table for values.
Control 20 Sets transmission speed (baud rate) as follows:

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200

* Async only. These values cannot be used with Data Link. These values set transmit speed
ONLY for Async; transmit AND receive speed for Data Link. Default value is defined by the
interface card configuration switches.

Status 21 Protocol dependent. Returns receive speed (Async) or GID address (Data Link) as
specified by Control Register 21.
Control 21 Protocol dependent. Functions are as follows:

Data Link: Sets Group IDentifier (GID) for terminal. Values O thru 26 correspond to
identifiers @, A, B,...Y, Z, respectively. Other values cause an error. Default
valueis 1 (“A”).

Async: Sets datacomm receiver speed (baud rate). Values and defaults are the same
as for Control Register 20.

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type (Async)
as specified by Control Register 22.
Control 22 Protocol dependent. Functions are as follows:
Data Link: Sets Device [Dentifier (DID) for terminal. Values are the same as for Control
Register 21. Default is determined by interface card configuration switches.
Async: Defines protocol handshake type that is to be used.

Value | Handshake type

Protocol handshake disabled

ENQ/ACK with desktop computer as the host
ENQ/ACK, desktop computer as a terminal

DC1/DC3, desktop computer as host

DC1/DC3, desktop computer as a terminal

DC1/DC3, desktop computer as both host and terminal

GL WN—=O

562 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 23 Returns current hardware handshake typé.
Control 23 Sets hardware handshake type as follows:

0 =Handshake OFF, non-modem connection.

1 =FULL-DUPLEX modem connection.

2 =HALF-DUPLEX modem connection.

3 =Handshake ON, non-modem connection.

Reset Value is determined by interface configuration switches.

Status 24 Protocol dependent. Returns value set by preceding CONTROL statement to Con-
trol Register 24.

Control 24 Protocol dependent. Functions as follows:
Data Link protocol: Set outbound block size limit.

Value | Block size Value | Block size
0 512 bytes 4 8 bytes
1 2 bytes . .
2 4 bytes . .
3 6 bytes 255 1 510 bytes

Reset outbound block size limit =512 bytes

Async Protocol: Set mask for control characters included in receive data message queue.
Bit set: transfer character(s).
Bit cleared: delete character(s).

Bit set | Value | Character(s) passed to receive queue
0 1 Handshake characters (ENQ, ACK, DC1, DC3)
1 2 Inbound End-of-line character(s)
2 4 Inbound Prompt character(s)
3 8 NUL (CHR$(0))
4 16 DEL (CHR$(127))
5 32 CHR$(255)
6 64 Change parity/framing errors to underscores (_) if bit is set.
7 128 Not used

Reset value =127 (bits O thru 6 set)

Status 25 Returns number of received errors since power up or

reset.

Note

Control Registers 26 through 35. Status Registers 27 through 35.
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link operation.

Interface Registers

Datacomm Status and Control Registers (cont.)

Status 26 Protocol dependent

Data Link protocol: Returns number of transmit errors (NAKs received) since last interface
reset.

Async protocol: Returns first protocol handshake character (ACK or DC1).

Control 26 Sets first protocol handshake character as follows:

(Async only) 6=ACK, 17 =DC1. Other values used for special applications only. Use ACK when Control
Register 22 is set to 1 or 2. Use DC1 when Control Register 22 is set to 3, 4, or 5.
Reset value=17 (DC1)

Status 27 Returns second protocol handshake character.

(Async only)

Control 27 Sets second protocol handshake character as follows:

(Async only) 5=ENQ, 19 = DC3. Other values used for special applications only. Use ENQ when Control
Register 22 is set to 1 or 2. Use DC3 when Control Register 22 is set to 3, 4, or 5.
Reset value=19 (DC3)

Status 28 Returns number of characters in inbound end-of-line delimiter sequence.
{(Async only)
Control 28 Sets number of characters in end-of-line delimiter sequence
(Async only) Acceptable values are 0 (no EOL delimiter), 1, or 2.
Reset Value=2

Status 29 Returns first end-of-line character.
(Async only)

Control 29 Sets first end-of-line character.
(Async only) Reset Value =13 (carriage return)

Status 30 Returns second end-of-line character.
(Async only)

Control 30 Sets second end-of-line character.
(Async only) Reset Value =10 (line feed)

Status 31 Returns number of characters in Prompt sequence.

(Async only)

Control 31 Sets number of characters in Prompt sequence.

(Async only) Acceptable values are O (Prompt disabled), 1 or 2.
Reset Value=1

Status 32 Returns first character in Prompt sequence.
(Async only)

Control 32 Sets first character in Prompt sequence.
(Async only) Reset Value=17 (DC1)

Status 33 Returns second character in Prompt sequence.
{Async only)

Control 33 Sets second character in Prompt sequence.
(Async only) Reset Value=0 (null)

563

564 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 34 Returns the number of bits per character.

(Async only)

Control 34 Sets the number of bits per character as follows:

(Async only) 0=>5 bits/character 2 =17 bits/character
1 =6 bits/character 3 = 8 bits/character)
When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Status 35 Returns the number of stop bits per character.

(Async only)

Control 35 Sets the number of stop bits per character as follows:

(Async only) 0 =1 stop bit 1=1.5 stop bits 2 =2 stop bits
Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

Status 36 Returns current Parity setting.
Control 36 Sets Parity for transmitting and receiving as follows:

Data Link Protocol: 0= NO Parity; Network host is HP 1000 Computer.
1=0DD Parity; Network host is HP 3000 Computer.
Reset Value=0
Async Protocol : 0=NONE; no parity bit is included with any characters.
1 =0DD; Parity bit SET if there is an EVEN number of
“1”s in the character body.
2 =EVEN; Parity bit OFF if there is an ODD number of
“1”s in the character body.
3="0"; Parity bit is always ZERO, but parity is not checked.
4 ="1"; Parity bit is always SET, but parity is not checked.
Default is determined by interface configuration switches. If 8 bits per character, parity
must be NONE, ODD, or EVEN.

Status 37 Returns inter-character time gap in character times.
(Async only)
Control 37 Sets inter-character time gap in character times.
(Async only) Acceptable values: 1 thru 255 character times.

0=No gap between characters.

Reset Value=0

Status 38 Returns Transmit queue status.
lf returned value =1, queue is empty, and there are no pending transmissions.

Status 39 Returns current Break time (in character times).
{Async only)
Control 39 Sets Break time in character times.
(Async only) Acceptable values are: 2 thru 255.
Reset Value =4.

Interface Registers

Powerfail Status and Control Registers

Status Register 0
Control Register 0

Status Register 1
Most Significant Bit

Card Identification is always 5.
Shut Down. Any non-zero value written to this register will turn off
both battery and ac-line power to the computer, which conserves
battery power after the service routine has finished responding to the
powerfail. If ac-line power is on when this statement is executed, the
computer will be turned back on in the normal powerup sequence.

Powerfail Interrupt Cause

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 * Bit3 Bit 2 Bit 1 Bit 0
One Power Power
Not Used Second Is Has
Left Back Failed
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1
Control Register 1 Undefined

Status Register 2

Interrupt Mask has bit definitions identical to the preceding register.

Control Register 2 Undefined

Status Register 3 Powerfail Status

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Failed One Currently Ac In the
Self Not Used Second Using Is Powerfail
Test Left Battery Down State

Value = 128! Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 3 Undefined.

565

566

Interface Registers

Powerfail Status and Control Registers (cont.)

Status Register 4

Control Register 4
Status Register 5

Control Register 5

Status Register 6

Control Register 6

Status Register 7
Control Register 7

Status Registers 8
thru 71

Control Registers
8 thru 71

Overheat Protection Timer contains the amount of battery time used
during this Powerfail State (in tens of milliseconds). For every second
the power is down, it must be back for two seconds to ensure ade-
quate cooling for the machine. Thus, the value of this register bounds
the maximum amount of time that can be obtained from the battery,
even though 60 seconds may have been specified as the protection
time (CONTROL Redgister 6).

Undefined.

Power Back Timer contains the time elapsed since power was restored
after the last powerfail (in tens of milliseconds).

Power Back Delay. The value of this register determines the amount
of time (in tens of milliseconds) that the computer will delay, after
power is back, before leaving the powerfail state (i.e., before generat-
ing a “‘Power Is Back’ interrupt). The power-on default value is 50
(500 milliseconds).

Powerfail Timer contains the time elapsed since the last powerfail (in
tens of milliseconds).

Protection Time. The value of register determines the maximum
amount of time (in tens of milliseconds) that the computer is to have
battery backup. Power-on default is 6000 (60 seconds).

Undefined.

Powerfail Delay Timer. The contents of this register determine the
amount of time (in tens of milliseconds) that the Powerfail-Protection
Interface will wait, after a powerfail, before generating a ‘‘Power Has
Failed” interrupt. Power-on default is 10 (100 milliseconds).

Continuous-Memory Registers contain the 64 bytes of data written by
the last CONTROL statement directed to these registers.

Continuous-Memory Registers. These sixty-four, single-byte registers
can be filled with any desired data, one byte (ASCII character) per
register.

Interface Registers 567

EPROM Programmer
Status and Control Registers

Status Register 0 ID Register
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 1 1 0 1 1

Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

This register contains a value of 27 (decimal) which is the ID of an
EPROM Programmer card.

Control Register 0 Interface Reset
Writing any non-zero value into this register resets the card; writing a
value of zero causes no action.

Status Register 1 Read Program Time
A value of 0 indicates that the program time is 52.5 milliseconds for
each 16-bit word (default); a non-zero value indicates that the prog-
ram time is 13.1 milliseconds.

Control Register 1 Set Program Time
Writing a value of O into this register sets the program time to 52.5
milliseconds for each 16-bit word; any non-zero value sets program
time to 13.1 milliseconds.

Status Register 2 Read Target Address
This register contains the offset address (relative to the card’s base
address) at which the next word of data will be read (via Status Regis-
ter 3) or written (via Control Register 3). The default address is O,
which is the address of the first byte on the card.

Control Register 2 Set Target Address
Writing to this register sets the offset address at which the next word of
data will be read (via Status Register 3) or written (via Control Register
3). The target address must always be an even number.

Status Register 3 Read Word at Target Address
This register contains the 16-bit word at the current target address.

Control Register 3 Write Word at Target Address
Writing a data word to this register programs a 16-bit word at the
current target address. The target address must be set (via Control
register 2) before every word is written. Automatic verification is also
performed after the word is programmed.

568

Interface Registers

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Current Memory Card Capacity (in bytes)

This register contains the current capacity of a fully loaded card in
bytes; it also indirectly indicates which type of EPROM devices are
being used on the card. If 262 144 is returned, then 27128 EPROMs
are being used; if 131 072 is returned, then 2764 devices are being
used. A O is returned if the programmer card is not currently con-
nected to any EPROM memory card.

Undefined.

Number of Contiguous, Erased Bytes

Reading this register causes the system to begin counting the number
of subsequent bytes, beginning at the current target address, that are
erased (or are empty sockets). The counting is stopped when a prog-
rammed byte (i.e., one containing at least one logical 0) is found or
when the end of the card is reached. If the byte at the current target
address is not FF, then a count of O is returned. Error 84 is reported if
the programmer card is not currently connected to any EPROM card.

Undefined.

Base Address of EPROM Memory Card
This register contains the (absolute) base address of the EPROM
memory card to which the programmer card is currently connected;
this base address is also the absolute address of the first word on the
card. Error 84 is reported if the programmer card is not currently
connected to any EPROM memory card.

Undefined.

Interface Registers 569

Parity, Cache and Float
Status and Control Registers

(Pseudo Select Code 32)
Status Register 0 Parity checking
0 =off,1 = on
Control Register 0 Sets parity checking
0 =offf 1 =on
Status Register 1 Cache
0 = off, 1 = on
Control Register 1 Sets cache
0 =off,1 =on
Status Register 2 HP 98635 floating-point math card/MC68881 floating-point math co-
processor
0 =off, 1 =on

Control Register 2 Sets HP 98635 floating-point math card/MC68881 floating-point
math co-processor

0 = off, 1 = on
Status Register 3 Cache
0 =off,1 = on

Control Register 3 Sets cache
0 = off, non-0 = on

570 Interface Registers

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4
Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11
Status Register 12

Summary of SRM Status Registers

Card [dentification

52 if the Remote Control switch (R) is set to O (closed); 180 if switch is set
to 1 (open).

Interface Interrupts

1 =interrupts enabled; 0 = interrupts disabled.

Interface Busy

1 =busy; 0=not busy.

Interface Firmware ID

Always 3 (the firmware ID of the HP 98629A interface).
Not Implemented

Data Availability

0 = receiver buffer empty;

1 =receiver data available but no control blocks buffered:
2 =receiver control blocks available but no data buffered:
3 =both control blocks and data available.

Node Address of the interface

Node address of the HP 98629A interface installed in this computer
which is set to the specified select code. The range of node addresses is O
through 63.

CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the
interface since powerup or (RESET).

Buffer Overflows

Total number of times the receive buffer has overflowed since powerup

or (RESET).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESET).

Useful Tables

Option Numbers

1 BASIC Main 19 ERR

2 GRAPH 20 DISC

3 GRAPHX 21 CS80

4 IO 22 BUBBLE

5 BASIC Main 23 EPROM

6 TRANS 24 HP 9885

7 MAT 25 HPIB

8 PDEV 26 FHPIB

9 XREF 27 SERIAL
10 KBD 28 GPIO
11 CLOCK 29 BCD
12 LEX 30 DCOMM
13 BASIC Main 31-40 Reserved
14 MS 41 “PHYREC”
15 SRM 42 CRTB
16-17 Reserved 43 CRTA
18 KNB2-0

Interface Select Codes
Internal Select Codes
Display (alpha)
Keyboard

Nk W+

Display (graphics)

Internal floppy-disc drive

Optional powerfail protection interface
Display (Graphics for bit mapped)
HP-IB interface (built-in)

Factory Presets for External Interfaces

8

9
10
11
12
14
20
21
27
28
30
32

HP-IB

RS-232

(not used)

BCD

GPIO

HP-IB Disc Interface

Data Communications

Shared Resource Management
EPROM Programmer

Color Output

Bubble Memory

Parity, Cache, Float (Pseudo Select Code)

571

572 Useful Tables

Display-Enhancement Characters
Alpha Displays:

Character | Action Resulting from
Code Displaying the Character
128 All enhancements off
129 Inverse mode on
130 Blinking mode on
131 Inverse and Blinking modes on
132 Underline mode on
133 Underline and Inverse modes on
134 Underline and Blinking modes on
135 Underline, Inverse, and Blinking
modes on
136 White
137 Red
138 Yellow Model 236C alpha colors.
139 Green (CRT control registers 5 and 15 through
140 Cyan [17 also provide a method of changing
141 Blue the alpha color.)
142 Magenta
143 Black)

Bit-Mapped Displays:
Character | Action Resulting from
Code Displaying the Character

128 All enhancements off

129 Inverse mode on
130 No action
131 Inverse mode on
132 Underline mode on
133 Underline and Inverse modes on
134 Underline mode on
135 Underline and Inverse modes on
136 White (pen 1))
137 Red (pen 2)
138 Yellow (pen 3) Default color map of displays
139 Green (pen 4) with at least three color planes.
140 Cyan (pen 5) [(CRT control registers 5 and 15
141 Blue (pen 6) through 17 also provide a
142 Magenta (pen 7) method of changing alpha
143 Black (pen 0)) color.)

PRINTIng CHR$ (x), where 136=x=<143, will provide the same colors as on the Model 236C as
long as the color map contains default values and the alpha write-enable mask includes planes
0 through 2. A user-defined color map which changes the values of pens 0 to 7 will change the
meaning of CHR$ (X).

US ASCII Character Codes

EQUIVALENT FORMS

ASCll HP-IB
Char.| Dec Binary Oct | Hex
NUL 0 00000000 | 000 00
SOH 1 00000001 | 001 01 GTL
STX 2 00000010 | 002 02
ETX 3 00000011 | 003 03
EOT 4 00000100 | 004 04 SDC
ENQ 5 00000101 | 005 05 PPC
ACK 6 00000110 | 006 06
BEL 7 00000111 | 007 07
BS 8 00001000 | 010 08 GET
HT 9 00001001 | 011 09 TCT
LF 10 | 00001010 | 012 0A
vT 1 00001011 | 013 0B
FF 12 00001100 | 014 oC
CR 13 00001101 | 015 oD
SO 14 | 00001110 | 016 OE
SI 15 | 00001111 | 017 OF
DLE 16 00010000 | 020 10
DCA1 17 00010001 } 021 1 LLO
DC2 18 | 00010010 | 022 12
DC3 19 | 00010011 | 023 13
DC4 20 00010100 | 024 14 DCL
NAK 21 00010101 | 025 15 PPU
SYNC| 22 | 00010110 | 026 16
ETB 23 00010111 | 027 17
CAN 24 00011000 | 030 18 SPE
EM 25 00011001 | 031 19 SPD .
suB 26 00011010 | 032 1A
ESC 27 | 00011011 | 033 1B
FS 28 00011100 | 034 1C
GS 29 00011101 | 035 1D
RS 30 | 00011110 | 036 1E
us 31 00011111 | 037 1F

EQUIVALENT FORMS

ASCIll HP-IB
Char.| Dec Binary Oct | Hex
space| 32 | 00100000 | 040 20 LAO
! 33 | 00100001 | 041 | 21 LA1
” 34 | oo100010 | 042 | 22 | A2
35 | 00100011 | 043 | 23 | LA3
$ 36 | 00100100 | 044 | 24 | LA4
% 37 | oo100101 | 045 | 25 | LAS
& 38 | 00100110 [046 | 26 | LA6
’ 39 | 00100111 | 047 | 27 | LA7
(40 | 00101000 [050 | 28 | LA8
) 41 | 00101001 [051 | 29 | LA9
* 42 | oo101010 [052 | 2A | LA10
+ 43 | oo101011 | 053 | 2B | LAM1
, 44 | 00101100 | 054 | 2C | LA12
- 45 | 00101101 | 055 | 2D | LA13
46 | 00101110 | 056 | 2E | LA14
/ 47 | oo101111 | 057 | 2F | LA1S
0 48 | 00110000 | 060 | 30 | LA16
1 49 | oo110001 | 061 | 31 | LA17
2 50 | oo110010 | 062 | 32 | LA18
3 51 | 00110011 | 063 | 33 | LA19
4 52 | 00110100 | 064 | 34 | LA20
5 53 | 00110101 | 065 | 35 | LA21
6 54 | 00110110 | 066 | 36 | LA22
7 55 | 0oo110111 | 067 | 37 | LA23
8 56 | 00111000 | 070 | 38 | LA24
9 57 | 00111001 | 071 | 39 | LA25
. 58 | 00111010 | 072 | 3A | LA26
, 59 | 00111011 | 073 | 3B | LA27
< 60 | 00111100 | 074 | 3C | LA28
= 61 | 00111101 | 075 | 3D | LA29
> 62 | 00111110 | 076 | 3E | LA30
? 63 | 00111111 | 077 | 3F | UNL

Useful Tables 573

574 Useful Tables

US ASCII Character Codes

EQUIVALENT FORMS

EQUIVALENT FORMS

ASCII HP-IB ASCII HP-iB

Char.| Dec Binary Oct | Hex Char.| Dec Binary Oct | Hex
@ 64 01000000 | 100 40 TAO * 96 01100000 | 140 60 SCo
A 65 01000001 101 41 TA1 a 97 01100001 141 61 SC1
B 66 01000010 | 102 42 TA2 b 98 01100010 | 142 62 SC2
C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3
D 68 01000100 | 104 44 TA4 d 100 | 01100100 | 144 64 SC4
E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5
F 70 01000110 | 106 46 TA6 f 102 | 01100110 | 146 66 SCé
G 71 01000111 107 47 TA7 g 103 | 01100111 147 67 SC7
H 72 01001000 | 110 48 TA8 h 104 | 01101000 | 150 68 SC8
| 73 01001001 111 49 TA9 i 105 | 01101001 151 69 SC9
J 74 01001010 | 112 4A TA10 I} 106 | 01101010 | 152 6A SC10
K 75 01001011 113 4B TA11 k 107 | 01101011 153 68 SC11
L 76 01001100 | 114 4C TA12 | 108 | 01101100 | 154 6C SC12
M 77 01001101 115 4D TA13 m 109 | 01101101 155 6D SC13
N 78 01001110 | 116 4E TA14 n 110 | 01101110 | 156 6E SC14
o 79 01001111 17 4F TA15 o] 111 | 01101111 157 6F SC15
P 80 01010000 | 120 50 TA16 P 112 | 01110000 | 160 70 SC16
Q 81 01010001 121 51 TA17 q 113 | 01110001 161 71 SC17
R 82 01010010 | 122 52 TA18 r 114 | 01110010 | 162 72 SC18
S 83 01010011 123 53 TA19 S 115 | 01110011 163 73 SC19
T 84 01010100 | 124 54 TA20 t 116 | 01110100 | 164 74 SC20
u 85 01010101 125 55 TA21 u 117 |1 01110101 165 75 SC21
A 86 01010110 | 126 56 TA22 v 118 1 01110110 | 166 76 SC22
w 87 01010111 127 57 TA23 w 119 | 01110111 167 77 sCa3
X 88 01011000 | 130 58 TA24 X 120 | 01111000 | 170 78 SC24
Y 89 01011001 131 59 TA25 y 121 | 01111001 171 79 SC25
z 90 | 01011010 | 132 | 5A | TA26 z 122 1 01111010 | 172 | 7A | SC26
[91 01011011 133 5B TA27 { 123 | 01111011 173 78 SCc27
AN 92 01011100 | 134 5C TA28 | 124 | 01111100 | 174 7C SC28
] 93 01011101 135 5D TA29 } 125 | 01111101 175 7D SC29
~ 94 01011110 | 136 5E TA30 - 126 | 01111110 | 176 7€ SC30
j— 95 01011111 137 5F UNT DEL 127 1 01111111 177 7F SC31

28109-11-A4S

Useful Tables 575

U.S./European Display Characters

These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

Asci | EQUIVALENT FORMS ascn| EQUIVALENT FORMS Asci | EQUIVALENT FORMS ascn| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
i 0 00000000 32 00100000 o 64 01000000 96 01100000
kR 1 00000001 33 00100001 A 65 01000001 97 01100001
2 00000010 i 34 00100010 E 66 01000010 I 98 01100010
E. 3 00000011 # 35 00100011 i 67 01000011 b 99 01100011
E 4 00000100 k2 36 00100100 I 68 01000100 o 100 01100100
By 5 00000101 i 37 00100101 E 69 01000101 101 01100101
A 6 00000110 & 38 00100110 F 70 01000110 i‘"‘ 102 01100110
7 00000111 39 00100111 0 71 01000111 103 01100111
B 8 00001000 ‘L 40 00101000 H 72 01001000 by 104 01101000
i 9 00001001 B 41 00101001 I 73 01001001 105 01101001
L3 10 00001010 * 42 00101010 g 74 01001010 106 01101010
K 11 00001011 + 43 00101011 24 75 01001011 107 01101011
Fe 12 00001100 44 00101100 L 76 01001100 108 01101100
E 13 00001101 - 45 00101101 i 77 01001101 W 109 01101101
kY 14 00001110 46 00101110 g 78 01001110 110 01101110
i 15 00001111 47 00101111 0 79 01001111 b 111 01101111
£ 16 00010000 5 48 00110000 F 80 01010000 £ 112 01110000
R 17 00010001 i 49 00110001 N 81 01010001 bt 113 01110001
18 00010010 50 00110010 F 82 01010010 114 01110010
B 19 00010011 = 51 00110011 = 83 01010011 115 01110011
by 20 00010100 2 52 00110100 T 84 01010100 t 116 01110100
i 21 00010101 = 53 00110101 L 85 01010101 7] 117 01110101
5 22 00010110 £ 54 00110110 i 86 01010110 L 118 01110110
B 23 00010111 55 00110111 87 01010111 119 01110111
4 24 00011000 o 56 00111000 H 88 01011000 Y 120 01111000
E: 25 00011001 57 00111001 i 89 01011001 121 01111001
£ 26 00011010 H 58 00111010 2 90 01011010 z 122 01111010
£ 27 00011011 59 00111011 91 01011011 123 01111011
28 00011100 < 60 00111100 92 01011100 124 01111100
ik 29 00011101 = 61 00111101 93 01011101 125 01111101
Fz 30 00011110 E 62 00111110 94 01011110 126 01111110
* 31 00011111 7 63 0ot11111 | | - 95 01011111 127 01111111

576 Useful Tables

U.S./European Display Characters

These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

asci | EQUIVALENT FORMS Ascii| EQUIVALENT FORMS Ascn| EQUIVALENT FORMS ascii| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
128 10000000 e 160 10100000 192 11000000 A 224 11100000
b 129 10000001 & 161 10100001 193 11000001 H 225 11100001
130 10000010 H 162 10100010 194 11000010 226 11100010
131 10000011 E 163 10100011 195 11000011 I 227 11100011
132 10000100 = 164 10100100 E 196 11000100 228 11100100
133 10000101 165 10100101 & 197 11000101 I 229 11100101
134 10000110 I 166 10100110 & 198 11000110 I 230 11100110
135 10000111 I 167 10100111 199 11000111 i 231 11100111
136 10001000 ’ 168 10101000 200 11001000 (N 232 11101000
137 10001001 : 169 10101001 g 201 11001001 233 11101001
138 10001010 170 10101010 o 202 11001010 o 234 11101010
139 10001011 h 171 10101011 203 11001011 = 235 11101011
140 10001100 172 10101100 204 11001100 = 236 11101100
141 10001101 173 10101101 & 205 11001101 Li 237 11101101
142 10001110 Ll 174 10101110 £ 206 11001110 i 238 11101110
143 10001111 175 10101111 207 11001111 i 239 11101111
144 10010000 | | 176 10110000 208 11010000 I 240 11110000
145 10010001 b 177 10110001 i 209 11010001 B 241 11110001
146 10010010 i 178 10110010 210 11010010 242 11110010
147 10010011 B 179 10110011 211 11010011 243 11110011
148 10010100 o 180 10110100 & 212 11010100 244 11110100
B 149 10010101 5 181 10110101 1 213 11010101 245 11110101
150 10010110 i 182 10110110 5] 214 11010110 246 11110110
151 10010111 i 183 10110111 215 11010111 * 247 11110111
152 10011000 i 184 10111000 A 216 11011000 248 11111000
153 10011001 185 10111001 217 11011001 5‘;: 249 11111001
154 10011010 186 10111010 i 218 11011010 250 11111010
155 10011011 N 187 10111011 219 11011011 i3 251 11111011
156 10011100 188 10111100 220 11011100 252 11111100
157 10011101 & 189 10111101 221 11011101 e 253 11111101
158 10011110 190 10111110 h 222 11011110 254 11111110

159 10011111 191 10111111 i 223 11011111 255 111111

Note 1: Characters 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

Useful Tables 577

U.S./European Display Characters

These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII
Nume Chrs Num, Chr, Num, Chr, Num, Chr,
0 N 32 64 @ 96 *
1 $ 33 ! 65 A 97 a
2) 34 " 66 B 98 b
3 & 35 # 67 C 99 [o]
4 & 36 $ 68 D 100 d
5 & 37 % 69 E 101 e
6 & 38 & 70 F 102 f
7 8 39 ! 71 G 103 g
8 % 40 (72 H 104 h
9 k3 41) 73 I 105 i
10 L 42 * 74 J 106 j
11 % 43 + 75 K 107 k
12 fe 44 , 76 L 108 1
13 % 45 - 77 M 109 m
14 s 46 . 78 N 110 n
15) 47 / 79 (0] 111 o
16 e 48 0 80 P 112 P
17 e, 49 1 81 Q 113 q
18 8 50 2 82 R 114 r
19 8 51 3 83 S 115 s
20 % 52 4 84 T 116 t
21 N 53 5 85 U 117 u
22 € 54 6 86 v 118 v
23 1 3 55 7 87 W 119 w
24 3 56 8 88 X 120 X
25 % 57 9 89 Y 121 y
26 % 58 : 90 Z 122 z
27 & 59 H 91 { 123 {
28 & 60 < 92 \ 124 |
29 & 61 = 93] 125 }
30 % 62 > 94 ~ 126 -
31 % 63 ? 95 _ 127

578 Useful Tables

U.S./European Display Characters

These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

Nums Chr, Num. Chr, Nums Chr, Num. Chr.
128 T 160 192 a 224 A
129 i 161 A 193 é 225 X
130 % 162 A 194 6 226 a
131 5 163 E 195 Q 227 b
132 i 164) 196 a 228 d
133 L 165 E 197 é 229 h
134 % 166 3 198 6 230 I
135 L 167 I 199 a 231 (m]
136 % 168 ’ 200 a 232 (m]
137 % 169) 201 [233 (1]
138 % 170 - 202 o] 234 o]
139 g 171 N 203 u 235 =
140 < 172 ~ 204 a 236 §
141] 173 ¥ 205 é 237 U]
142 " 174 0 206 o) 238 Y
143 & 175 £ 207 a 239 y
144 9 176 - 208 A 240 b
145 9 177 8 209 i 241 b
146 g 178 g 210 (7] 242 5
147 kS 179 ' 211 A 243 5
148 % 180 ¢ 212 a 244 B
149 g i81 ¢ 213 i 245 4
150 2 182 N 214 "] 246 -
151 g 183 o] 215 & 247 3
152 g 184 i 216 A 248 3
153 2 185 é 217 1 249 a
154 2 186 o] 218 (=] 250 Qe
155 2 187 £ 219 U 251 «
156 2 188 ¥ 220 E 252]
157 2 189 8 221 i 253 »
158 % 190 f 222) 254 4
159 % 191 ¢ 223 6 255 K]

Useful Tables 579

U.S./European Display Characters

These characters can be displayed on the screen of Series 300 computers (except with a 98546
Display Compatibility Interface or 98700 Display Controller; see the preceding table).

ASCII
Num, Chr, Num. Chr, Num, Chr, Num, Chr,
0 N 32 64 @ 96 *
1 % 33 ! 65 A 97 a
2 % 34 " 66 B 98 b
3 £ 35 # 67 C 99 c
4 L4 36 $ 68 D 100 d
5 g 37 % 69 E 101 e
6 ! 38 & 70 F 102 f
7 11 39 ' 71 G 103 q
8 . 3 40 (72 H 104 h
9 LS 41) 73 1 105 i
10 % 42 * 74 J 106 j
11 Y 43 + 75 K 107 k
12 fe 44 , 76 L 108 1
13 & 45 - 77 M 109 (]
14 k) 46 . 78 N 110 n
15 % 47 / 79 (o] 111 o
16 2 48 0 80 P 112 p
17 o 49 1 81 Q 113 q
18 g 50 2 82 R 114 r
19 g 51 3 83 s 115 s
20 % 52 4 84 T 116 t
21 N 53) 85 U 117 u
22 g 54 6 86 v 118 v
23 % 55 7 87 W 119 w
24 S 56 8 88 X 120 X
25 1 57 9 89 Y 121 y
26 3 58 : 90 Z 122 4
27 3 59 H 91 (123 {
28 A 60 < 92 \ 124 |
29 % 61 = 93 1 125 }
30 % 62 > 94 ~ 126 -
31 % 63 ? 95 - 127

580 Useful Tables

U.S./European Display Characters

These characters can be displayed on the screen of Series 300 computers (except with a 98546
Display Compeatibility Interface or 98700 Display Controller; see the preceding table).

ASCII

Nums Chr. Num. Chr, Nums Chr, Num. Chr,
128 ¢ 160 192 a 224 A
129 L 161 A 193 é 225 X
130 % 162 A 194 o] 226 a
131 b 163 E 195 Q 227)]
132 i 164 £ 196 a 228 d
133 b 165 E 197 é 229 £t
134 % 166 i 198 6 230 g
135 b 167 I 199 u 231 (w]
136 " 168 ’ 200 a 232 (=]
137 R 169 * 201 e 233 &
138 ¥ 170 - 202 o) 234 o]
139 S 171 " 203 u 235 -]
140 & 172 ~ 204 a 236 g
141 & 173 U 205 é 237 U]
142 % 174 0 206 6 238 Y
143 & 175 £ 207 §] 239 y
144 g 176 - 208 A 240 P
145 9 177 Y 209 i 241 o]
146 9 178 y 210 4/] 242

147 9 179 ’ 211 A 243 M
148 % 180 ¢ 212 a 244 1
149) 181 ¢ 213 b 245 5
150 2 182 N 214 "] 246 -
151 g 183 o] 215 & 247 3
152 2 184 i 216 A 248 3
153 3 185 é 217 1 249 a
154 2 186 o] 218 6 250 e
155 2 187 £ 219 8] 251 «
156 2 188 ¥ 220 E 252 []
157 9 189 § 221 i 253 »
158 9 190 f 222 [} 254 b4
159 % 191 ¢ 223 o 255 K]

Katakana Display Characters

Useful Tables

These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

Asci | EQUIVALENT FORMS asci| EQUIVALENT FORMS asci| EQUIVALENT FORMS ascii| EQUIVALENT FORMS

Char. Dec Binary Char. Dec Blnary Char. Dec Binary Char. Dec Binary
0 00000000 32 00100000 B 64 01000000 96 01100000
e 1 00000001 33 00100001 2 65 01000001 e 97 01100001
2 00000010 " 34 00100010 E 66 01000010 i 98 01100010

3 00000011 # 35 00100011 L 67 01000011 - 99 01100011
4 00000100 36 00100100 i 68 01000100 o 100 01100100
5 00000101 37 00100101 69 01000101 & 101 01100101
6 00000110 38 00100110 F 70 01000110 ¥ 102 01100110
7 00000111 39 00100111 71 01000111 b 103 01100111

8 00001000 L 40 00101000 H 72 01001000 104 01101000

9 00001001 M 00101001 I 73 01001001 i 105 01101001
10 00001010 42 00101010 74 01001010 106 01101010

1 00001011 43 00101011 75 01001011 k 107 01101011

12 00001100 44 00101100 76 01001100 108 01101100

13 oooot101 | | 45 00101101 i 77 01001101 109 01101101
i 14 00001110 46 00101110 78 01001110 110 01101110
15 00001111 47 00101111] 79 01001111 11 01101111

16 00010000 48 00110000 F 80 01010000 2 112 01110000

17 00010001 i 49 00110001 81 01010001 113 01110001

18 00010010 = 50 00110010 = 82 01010010 i 114 01110010

19 00010011 I 51 00110011 = 83 01010011 E 115 01110011

20 00010100 52 00110100 T 84 01010100 116 01110100

21 ooot0101 | | = 53 00110101 LI 85 01010101 L 117 01110101

22 00010110 54 00110110 i 86 01010110 i 118 01110110

23 00010111 7 55 00110111 b 87 01010111 119 01110111

24 00011000 o 56 00111000 2 88 01011000 120 01111000

25 00011001 57 00111001 89 01011001 121 01111001

26 00011010 58 00111010 Z 90 01011010 z 122 01111010

27 00011011 i 59 00111011 91 01011011 123 01111011

28 00011100 60 00111100 ¥ 92 01011100 124 01111100

29 00011101 = 61 00111101 93 01011101 125 01111101

30 00011110 62 00111110 94 01011110 126 01111110

31 00011111 5 63 oo111111 | | . 95 01011111 127 01111111

581

582 Useful Tables

Katakana Display Characters

These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ascii| EQUIVALENT FORMS Asci| EQUIVALENT FORMS Ascli| EQUIVALENT FORMS asci| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
128 10000000 160 10100000 192 11000000 224 11100000
129 10000001 @ 161 10100001 193 11000001 225 11100001
130 10000010 162 10100010 i 194 11000010 226 11100010
131 10000011 E 163 10100011 F 195 11000011 227 11100011
132 10000100 164 10100100 196 11000100 228 11100100
133 10000101 165 10100101 197 11000101 : 229 11100101
134 10000110 = 166 10100110 = 198 11000110 230 11100110
135 10000111 F 167 10100111 B 199 11000111 ¥ 231 11100111
136 10001000 168 10101000 200 11001000 232 11101000
137 10001001 = 169 10101001 201 11001001 : 233 11101001
138 10001010 b 170 10101010 % 202 11001010 : 234 11101010
139 10001011 171 10101011 b 203 11001011 @ 235 11101011
140 10001100 172 10101100 11? 204 11001100 8 236 11101100
141 10001101 173 10101101 205 11001101 e 237 11101101
142 10001110 174 10101110 206 11001110 3 238 11101110
143 10001111 175 10101111 i 207 11001111 E 239 11101111
144 10010000 | | - 176 10110000 208 11010000 . 240 11110000
3 145 10010001 177 10110001 - 209 11010001 2 241 11110001
5 146 10010010 178 10110010 = 210 11010010 2 242 11110010
F 147 10010011 i 179 10110011 i 211 11010011 243 11110011
148 10010100 T 180 10110100 212 11010100 3 244 11110100
149 10010101 el 181 10110101 213 11010101 : 245 11110101
i3 150 10010110 182 10110110 214 11010110 246 11110110
151 10010111 183 10110111 = 215 11010111 247 11110111
152 10011000 a 184 10111000 216 11011000 8 248 11111000
153 10011001 185 10111001 217 11011001 & 249 11111001
154 10011010 4 186 10111010 218 11011010 e 250 11111010
155 10011011 187 10111011 i 219 11011011 251 11111011
156 10011100 i 188 10111100 S 220 11011100 252 11111100
157 10011101 4 189 10111101 A 221 11011101 i 253 11111101
158 10011110 190 10111110 222 11011110 254 11111110
159 10011111 191 10111111 # 223 11011111 255 11111111

Note 1: Characters 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

28109-171-0Q1S

Katakana Display Characters

Useful Tables

These characters can be displayed on the Model 237 and on all Series 300 bit-mapped alpha

displays.
Asci | EQUIVALENT FORMS ascii | EQUIVALENT FORMS asci| EQUIVALENT FORMS Ascii| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char Dec Binary Char. Dec Binary
i 0 00000000 32 00100000 @ 64 01000000 96 01100000
S 1 00000001 33 00100001 = 65 01000001 &, 97 01100001
e 2 00000010 34 00100010 66 01000010 98 01100010
E; 3 00000011 # 35 00100011 67 01000011 O 99 01100011
E 4 00000100 # 36 00100100 it 68 01000100 n 100 01100100
B 5 00000101 s 37 00100101 & 69 01000101 i 101 01100101
& 6 00000110 38 00100110 70 01000110 102 01100110
7 00000111 39 00100111 G 7 01000111 3 103 01100111
B 8 00001000 ‘ 40 00101000 S 72 01001000 i 104 01101000
g3 9 00001001 M 00101001 i 73 01001001 i 105 01101001
I 10 00001010 # 42 00101010 74 01001010 i 106 01101010
K 1 00001011 + 43 00101011 E 75 01001011 107 01101011
iz 12 00001100 " 44 00101100 L 76 01001100 108 01101100
» 13 00001101 45 00101101 77 01001101 iy 109 01101101
Er 14 00001110 46 00101110 8 78 01001110 110 01101110
i 15 00001111 47 00101111 i 79 01001111 i 11 01101111
A 16 00010000 g 48 00110000 F 80 01010000 112 01110000
£ 17 00010001 i 49 00110001 B 81 01010001 113 01110001
B 18 00010010 b 50 00110010 k2 82 01010010 114 01110010
e 19 00010011] 51 00110011 = 83 01010011 = 115 01110011
By 20 00010100 2 52 00110100 T 84 01010100 1 116 01110100
21 00010101 53 00110101 L 85 01010101 i 117 01110101
. 22 00010110 £ 54 00110110 i 86 01010110 L 118 01110110
B 23 00010111 v 55 00110111 b 87 01010111 i 119 01110111
4 24 00011000 & 56 00111000 b 88 01011000 120 01111000
Es 25 00011001 E 57 00111001 i 89 01011001 L 121 01111001
& 26 00011010 3 58 00111010 < 90 01011010 s 122 01111010
27 00011011 59 00111011 91 01011011 123 01111011
28 00011100 60 00111100 ¥ 92 01011100 124 01111100
iz 29 00011101 = 61 00111101 1 93 01011101 B 125 01111101
2 30 00011110 62 00111110 94 01011110 126 01111110
& 31 00011111 5 63 00111111 95 01011111 127 01111111

583

584 Useful Tables

Katakana Display Characters

These characters can be displayed on the Model 237 and on all Series 300 bit-mapped alpha

displays.
Ascii| EQUIVALENT FORMS Asci| EQUIVALENT FORMS Ascii| EQUIVALENT FORMS Asci| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
T 128 10000000 fy 160 10100000 192 11000000 Eo 224 11100000
i 129 10000001 @ 161 10100001 193 11000001 Ey 225 11100001
% 130 10000010 162 10100010 194 11000010 Ex 226 11100010
5 131 10000011 i 163 10100011 i 195 11000011 E3 227 11100011
L 132 10000100 164 10100100 196 11000100 Ea 228 11100100
L 133 10000101 = 165 10100101 197 11000101 Es 229 11100101
% 134 10000110 = 166 10100110 o 198 11000110 Es 230 11100110
L_ 135 10000111 167 10100111 K 199 11000111 £y 231 11100111
% 136 10001000 168 10101000 E 200 11001000 Eg 232 11101000
% 137 10001001 = 169 10101001 201 11001001 Eg 233 11101001
& 138 10001010 E 170 10101010 202 11001010 Ea 234 11101010
% 139 10001011 171 10101011 i 203 11001011 Eg 235 11101011
& 140 10001100 172 10101100 204 11001100 Ec 236 11101100
% 141 10001101 E 173 10101101 205 11001101 Ep 237 11101101
T 142 10001110 EEl 174 10101110 206 11001110 Ee 238 11101110
% 143 10001111 175 10101111 B 207 11001111 Ee 239 11101111
% 144 10010000 | | - 176 10110000 208 11010000 Fo 240 11110000
% 145 10010001 177 10110001 o 209 11010001 Fy 241 11110001
% 146 10010010 oq 178 10110010 i 210 11010010 Fz 242 11110010
% 147 10010011 3 179 10110011 211 11010011 Fa 243 11110011
% 148 10010100 T 180 10110100 212 11010100 Fa 244 11110100
B 149 10010101 F 181 10110101 213 11010101 Io 245 11110101
% 150 10010110 182 10110110 i 214 11010110 Fs 246 11110110
i 151 10010111 ¥ 183 10110111 i 215 11010111 k7 247 11110111
% 152 10011000 b 184 10111000 216 11011000 Fa 248 11111000
% 153 10011001 I 185 10111001 217 11011001 Fg 249 11111001
A 154 10011010 A 186 10111010 ! 218 11011010 Fa 250 11111010
% 155 10011011 i 187 10111011 & 219 11011011 Fr 251 11111011
2 156 10011100 i 188 10111100 i 220 11011100 . 252 11111100
? 157 10011101 = 189 10111101 - 221 11011101 Fo 253 11111101
ﬁé’ % 158 10011110 190 10111110 222 11011110 Fe 254 11111110
=
% ¥ 159 10011111 191 10111111 # 223 11011111 255 11111111

Note 1: Characters 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

Useful Tables 585

Master Reset Table

8 8
3 @ S Note 2 5
Power | & g 2 |RESET| END/ | LOAD | LOAD | GET | GET § Main | SUB | SUB
NEREAE STOP &Go &Go | & | Prerun | Enty | Ext

CRT
CRT DISP Line Clear | Clear — — Clear — — — — — — — — —
CRT Display Functions Off Off — — — — — — — — — — — —
CRT Message Line Ready | Clear | Clear | Clear | Reset — — — — — — Clear — —
CRT Input Line (Note 6) Clear Clear Clear — Clear — — — — —_ _ — —_ —
CRT Printout Area Clear | Clear — — — — — — — — — — — —
CRT Print Position (TABXY) 11 11 — — INote 15 — — — — — — — — —
ALPHA ON/OFF (Note 3) On On On On On On - — — — — — —_ —_
KEYBOARD
Keyboard Recall Buffer Clear —_ — — — — — — — — — — — —
Keyboard Result Buffer Empty | Empty — — — — — — — — — — — —
Keyboard Knob Mode ! o) ! ? 1 — — — — — — — — —
Tabs On Input Line None | None — — — — — — — — — — — —
Typing Aid Labels Note 16 |Note 16 — — — — — — — —_ —_— — — —
Keyboard Katakana Mode Off Off Off — Off — — — — — — — — _
SUSPEND INTERACTIVE off Off Off Off Off off Off off Off Off — Off — —
PRINTING
Print column 1 1 — — 1 — — —_ — — — — — —
PRINTALL Off off — — off — — — — — — — — —
PRINTALL IS 1 1 — — — — — — — — — — — —
PRINTER IS 1 1 — — — — — — — — — — — —
ENVIRONMENTS & VARIABLES
Allocated Variables None | None | None | None | Note 1 | Note1 | None | None | None | None — None | None | Pre-ent
Normal Variables None | None | None | None — — None | None | None | None — |Note 11| Note 11| Pre-ent
COM Variables None | None — None — — — Note 9 — Note 9 — — — —
OPTION BASE 0 0 0 — — — — Note 9 — Note 9 — Note 9 | Note 9 | Pre-ent
/O Path Names None | Closed | Closed | Closed | None | Closed | Closed | Closed | Closed | Closed — Closed — Jsubclsd
/O Path Names in COM None | Closed — Closed | None — |Note 10| Note 10| Note 10| Note 10} — — — —
Keyboard Variable Access No No No No Main Main No In cnt. No Inent. | Inent. | Main SUB | Pre-ent
BASIC Program Lines None | None | None — — — Note 4 | Note 4 | Note 4 | Note 4 { Note 4 — — —_
BASIC Program Environment Main Main Main Main Main Main Main Main Main Main — Main SUB | Pre-ent
Normal Binary Programs None | None — — — — Note 5 | Note 5 — — — — — —
SUB Stack Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear Push Pop
NPAR 0 0 0 0 0 0 0 0 0 0 — 0 Actual | Pre-ent
CONTINUE Allowed No No No No No No No Yes No Yes Yes Yes Yes Yes
ON <event> ACTIONS
ON <event> Log Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty Empty — Empty | Note 8 | Note 8
System Priority 0 0 0 0 0 0 0 0 0 0 — 0 Note 7 | Pre-ent
ON KEY Labels None | None | None | None | None | None | None | None | None | None — None — Pre-ent
ENABLE/DISABLE Enable | Enable | Enable | Enable | Enable | Enable | Enable | Enable | Enable | Enable — Enable — —
KNOBX & KNOBY 0 0 0 0 0 0 0 0 0 0 — 0 — —

586 Useful Tables

§ A é Note 2 5
power | & | 5 [3 |reser| eno/ | roap | roap | cer | cer & | Man | suB | sus
On > 2 5 STOP &Go &Go | & |Prerun | Enty | Exit
MISC.
GOSUB Stack Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear | Local |Pre-ent
TIMEDATE Note 14 — — — e — — — — — — —_ — —
ERRL, ERRN, and ERRDS 0 0 — — — — — 0 — 0 e 0 _ —
ERRM$ Null Null — — — — — Null — Null — Null — —
DATA Pointer None | None | None | None | None | None | None |1istmain| Nome |Istmain] — [1stmain] 1st sub J-Pre-ent
LEXICAL ORDER IS Stand. | Stand. — — — — — — — —_— — — — _
MASS STORAGE 1S Note 12|Note 12| — - — — — — — — — — — —
CHECKREAD ON/OFF Off Oft — — — — — — — — — — — —
Angle Mode RAD RAD RAD RAD — — RAD RAD RAD RAD e RAD — Pre-ent
Random Number Seed Note 13| Note 13|Note 13| — — — — |Note 13] — [Note13] — |[Note13| — —
DET 0 0 0 — — - — — — — —— 0 — —
TRANSFER None | Aborts [Note 17| Waits | Aborts | Waits | None |Note 18{ None [Waits — None — |Note 19
TRACE ALL Off Off Off — — — — — —_ — — _— — —

— = Unchanged
Pre-ent = As existed previous to entry into the subprogram.
In cnt. = Access to variables in current context only.
1st main = Pointer set to first DATA statement in main program.
Ist sub = Pointer set to first DATA statement in subprogram.
sub clsd = All local /O path names are closed at subexit.
Waits = Operation waits until TRANSFER completes.

Note 1: Only those allocated in the main program are available.

Note 2: Pressing the STOP key is identical in function to executing STOP. Editing or altering a paused program causes the program to go
into the stopped state.

Note 3: Alpha is tumed on automatically by typing on the input line, by writing to the display line, or by an output to the message line.
Note 4: Modified according to the statement or command parameters and file contents.

Note 5: Any new binary programs in the file are loaded.

Note 6: Includes cursor position, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay.
(These last three are defaulted only at SCRATCH A and Power On.)

Note 7: The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL.

Note 8: See the appropriate keyword.

Note 9: As specified by the new environment or program.

Note 10: A COM mismatch between programs will close /O path names. If /O path names exist in a labeled COM, and a LOAD or GET
brings in a program which does not contain that labeled COM, those /O path names are closed.

Note 11: Numeric variables are set to 0, and string lengths are set to 0.

Note 12: The default mass storage device is INTERNAL (the right-hand drive) on the 9826 and 9836. See the 9816 Installation Manual for
information on its default mass storage device.

Note 13: The default random number seed is INT(PI x (23! —2)/180). This is equal to 37 480 660.

Note 14: The default TIMEDATE is 2.086 629 12 E+ 11 (midnight March 1, 1900, Julian time).

Note 15: After a RESET. the CRT print position is in column one of the next line below the print position before the RESET.

Note 16: Typing aid labels are displayed unless a program is in the RUN state.

Note 17: Operation waits until TRANSFER completes unless both 1/O path names are in COM.

Note 18: Operation waits until TRANSFER completes unless both /O path names are in a COM area preserved during the LOAD.
Note 19: Operation waits until TRANSFER completes if the TRANSFER uses a local /O path name.

Useful Tables

Further Comments

The PAUSE key, the programmed PAUSE statement, and executing PAUSE from the keyboard all have identical effects. The only
permanent effects of the sequence ‘“‘PAUSE... CONTINUE” on a running program are:

1. Delay in execution.

2. Second and subsequent interrupt events of a given type are ignored.

3. INPUT, LINPUT, and ENTER 2 statements will be restarted.

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not logged or executed) during the pause.

5. A TRANSFER may complete during the pause, causing ON EOT to be serviced at the next end-of-line.

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects:

— a PAUSE

— a beep

— an error message in the message line

— setting the values of the ERRL, the ERRN, and possibly the ERRDS functions

— setting the default EDIT line number to the number of the line in which the error occurred.

Autostart is equivalent to: Power On, LOAD “AUTOST”, RUN.

CLR IO terminates ENTER and OUTPUT on all interfaces, handshake setup operations, HP-IB control operations, DISP, ENTER
from CRT or keyboard, CAT, LIST, external plotter output, and output to the PRINTER IS, PRINTALL IS, and DUMP DEVICE IS
devices when they are external. CLR IO does not terminate CONTROL, STATUS, READIO, WRITEIO, TRANSFER, real-time clock
operations, mass storage operations (other than CAT), OUTPUT 2 (keyboard), or message line output.

CLR IO clears any pending closure key action.

If CLR IO is used to abort a DUMP GRAPHICS to an external device, the external device may be in the middle of an escape-code
sequence. Thus, it might be counting characters to determine when to return to normal mode (from graphics mode). This means thata
subsequent [/O operation to the same device may yield “‘strange” results. Handling this situation is the responsibility of the user and is
beyond the scope of the firmware provided with the product. Sending 75 ASCII nulls is one way to ‘‘clear” the 9876 Graphics Printer.

587

588 Useful Tables

Graphic Reset Table

A
S e} § Note 2
Power a ?I a RESET | END { GINIT | Main
On i 9 i STOP Prerun
PLOTTER IS CRT CRT — — CRT - CRT -
Graphics Memory Clear | Clear — — Note 1 — Note 1
VIEWPORT hrd clip | hrd clip — — hrd clip — hrd clip -
X and Y Scaling (unit of measure) GDU GDU — — GDU — GDU -
Sott Clip hrd clip | hrd clip - — hrd clip — hrd clip
Current Clip hrd clip | hrd ¢lip — — hrd clip — hrd clip —
CLIP ON‘OFF Off Off — — Off — Off
PIVOT 0 0 — — 0 — 0
ARLA PEN 1 1 — — 1 - 1
PEN 1 1 — — 1 — 1
LINE TYPE 1.5 1.5 — — 1.5 — 1.5
Pen Position 0.0 0.0 — — 0.0 - 0.0 -
LORG 1 1 — - 1 - 1
CSIZE 5.6 5.6 — — 5.6 - 5.6 —
LDIR 0 O — — 0 — 0 -
PDIR 0 o — — 0 — 0
GRAPHICS ON/OFF Off Off — — — - —
ALPHA ON/OFF (Note 3) On On On On On On —
DUMP DEVICE 1S 701 701 — — — - —
GRAPHICS INPUT IS None None — — None - None
TRACK .. ON/OFF Off Off — — Off - Off
Color Map (Note 4) Off Off — — Note 5 — Note 5 -
Drawing Mode Norm | Norm — — Norm - Norm

— = Unchanged
hrd clip = The default hard clip boundaries of the CRT.

Note 1 Although RESET leaves the graphics memory unchanged. it will be cleared upon execution of the next graphics statement that sets
a default plotter following the RESET.

Note 2: Pressing the STOP key is identical to executing STOP. Altering a paused program causes the program to go into the stopped state.
Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line. or by an output to the message line.

Note 4: With color map off. 8 standard colors are available. With color map on, 16 user-defined colors are available. See PLOTTER IS.

Note 5: Although the color map remains unchanged, it is changed if a graphics statement selects the device as a default plotter.

Interface Reset Table

Useful Tables 589

[
% 8 Note 5 Note 6
Power a g BASIC | END/ | LOAD | GET | Reset | Main | SUB | SUB CLR

On :Z: g RESET | STOP Cmd | Prerun | Entry Exit Vo
GPIO Card
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Enable Interrupt Mask Clear Clear Clear Clear Clear Clear Clear Clear Clear — —— —
Hardware Reset of Card (PRESET) Reset | Note 1 | Note 1 | Reset | Note 1 | Note 1 | Note 1 | Reset | Note 1 — —_ Note 1
PSTS Error Flag Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
RS-232 Card
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — _ —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Enable Interrupt Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — —_ —
Hardware Reset of Card Reset | Reset — Reset — — — Reset — — — —
Data Rate/Character Format Swtch | Swich — — — — — — — — — —
RTS-DTR Latch Clear | Clear — — — — Clear — — — —
Request to Send Line Clear | Clear — Clear — — — Clear — — — Note 2
Data Terminal Ready Line Clear | Clear — Clear — — — Clear — — — Note 2
Line Status Register Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — Clear
Modem Status Register Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — Clear
Data-In Buffer Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty Empty — — Empty
Error-Pend. Flag Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — Clear
HP-IB
Interrupt Enable Bit Clear | Clear | Ciear | Clear | Clear | Clear | Clear | Clear | Clear — — —_
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Interrupt Enable Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
User Interrupt Status Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Serial Poll Register Clear | Clear — Clear — —_ — Clear — — — —
Parallel Poll Register Clear | Clear — Clear — — — Clear — — — —
My Address Register Note 4 | Note 4 — — — — — — — — — —
IFC Sent Note 3 | Note 3 — Note 3 — — — Note 3 — — — —
REN Set True Note 3 | Note 3 — Note 3 — — — Note 3 — — — —
Data Communications
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear —_ _— —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Interrupt Enable Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear —_ _ —
Hardware Reset of Card Reset | Note 7 — Reset — — — Note 7 — — — —
Line State Dscon | Dscon — Dscon — — — Dscon — — — —
Data Buffers Empty | Empty — Empty — — — Empty — — — —
Protocol Selection (Async or Data Link) | Swich | Note 8 — Swtch —_ — — Note 8 —_ — — —
Protocol Options Swich | Swich — Swtch — — — Swich — —_ — —
BCD Card
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — _
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Interrupt Enable Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Hardware Reset of Card Reset | Note 1 | Note 1 | Note 1 | Note 1 | Note 1 | Note 1 | Reset | Note 1 — — Note 1
Rewind Driver Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd — — Rwd
BCD/Binary Mode Swtch | Swich — — — — — — — — — _

590 Useful Tables

n
% é Note 5 Note 6
Power 3 2 BASIC | END: | LOAD | GET { Reset | Main SUB SUB CLR
On IS g RESET | STOP Cmd | Prerun | Entry Exit [0
EPROM Programmer
Hardware Reset of Card Reset | Reset - Reset — — Reset - — — -
Programming Time Register Clear | Civar - — — e Clear — — — —
Target Address Register Clear | Civar -— — —_ — Clear - — — —

— = Unchanged

Swich = Set according to the switches on the interface card

Dscon = A disconnect is performed

Note 1: Reset only if card is not ready.
Note 2: Cleared only if corresponding modem control line is not set.

Note 3: Sent only if System Controller.
Note 4: If System Controller and Active Controller. address is set to 21. Otherwise, it is set to 20.
Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the

program to go into the stopped state.
Note 6: Caused by sending a non-zero value to CONTROL register 0.
Note 7: This is a “'soft reset,”” which does not include an interface self-test or a reconfiguration of protocol.

Note 8: Set according to the value used in the most recent CONTROL statement directed to Register 3. If there has been no
CONTROL 3 statement. the switch settings are used.

Useful Tables 591

Second Byte of Non-ASCII Key Sequences (String)

Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on the
CRT. The first character is an “‘inverse-video” K. This table can be used to look up the key that
corresponds to the second character of the sequence. (On the small keyboard of the Model 216,
some non-ASCII keys generate ASCII characters when they are pressed while holding the CTRL

key.)
Character | Value Key Character | Value Key
space ! p 80
! 33 Q !
" 1 R 82
® 35 5 83 STEP
$ 36 T 84 ERIe
% 37 u 85
8 38 v 86
: 39 W 87 G -C1)
{ 40 SHIFT) -(_TAB b 88 EXECUTE
) 41 Y 89 Roman Mode
* 42 z !
. 43 r 91
, 44 \ 92)
45 1 93 SET TAB)
46 Ignored 94
/ 47 - 95 sur)-Cw)
0 48 (W) . !
1 49) a 97
2 50 T) b 98 ()
3 51 () c 99 (Chz)
4 52) 4 100 ki3
5 53) e 101
6 54 k) f 102 (k)
7 55) 3 103
8 56 h 104
9 57) i 105
: 58 (SHIFT) -system(__6_)? J 106
; 59 (SHIFT) -system(_f1_)? K 107
60 1 108 (Cht)
= 61 m 109 (k)
3 62 n 110 (k)
? 63 RECALL o 111 -system(_f1_)?
e 64 -(CRecalL) P 112 -system(_f2)
A 65 a 113)y
B 66 r 114 -system(_f4_)?
C 67 s 115 (SHIFT) -user(_1_)?
D 68 t 116 -user(_f2_)?
E 69 ENTER i 117 - 2
F 70 118 2
G 71 =) " 119 2
H 72) X 120 SHIFT) -user(_f6)>
1 73 CLR 10 y 121 (SHIFT) -user(_f7_)?
J 74 Katakana Mode z 122 -user(_f8_)°
K 75 > 123
L 76 | 124
M 77 < 125
N 78 ~ 126 SHIFT) -(Menu)
0 79 # !

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these characters follows CHR$(255) in an
output to the keyboard, an error is reported (Error 131 Bad non-alrhanume ric Kevcode.).

2 System and user refer to the softkey menu which is currently active.

592 Useful Tables

Selected High-Precision Metric Conversion Factors

English Units

Metric Units

To convert from
English to Metric,
multiply by:

To convert from
Metric to English,
multiply by:

Length
mil
inch
foot
mile (intl.)

Area
inch
foot?
mile?
acre
(U.S. survey)

Volume
inches®
feet®
ounces

(U.S. fluid)

gallon
(U.S. fluid)

Mass
pound (avdp.)
ton (short)

Force
ounce (force)
pound (force)

Pressure
psi
inches of Hg
(at 32°F)

Energy
BTU (IST)

BTU (IST)
BTU (IST)
ftelb

Power
BTU (IST)/ hr
horsepower
(mechanical)
horsepower
(electric)
ftelb/s

Temperature
Rankine
°Fahrenheit

micrometre (micron)
millimetre

metre 1

kilometre

millimetre®
metre
kilometre
hectare

millimetres®
metres .
centimetres

litre

kilogram
ton (metric)

6.4516x 10%%
9.290 304 x 10 %%
2.589 988 110
4.046 873 x 107!

1.638 706 4 x 10%%
2.831 684 659 x 1072
2.957 353 x 10}

3.785 412

45359237 x10 '«
9.0718474x 10 1

3.937 007 874 x 1072
3.937 007 874 x 1072
3.280 839 895

6.213711922x 107!

1.550 003 100 x 1073
1.076 391 042 x 10!
3.861021585x 107!
2.471 044

6.102 374 409 x 107°
3.531 466 672 x 10!
3.381402x 1072

2.641 721 x 107!

2.204 622 622
1.102 311 311

% Exact conversion

1 Conversion redefined in 1959
1 Conversion redefined in 1964
§ Conversion redefined in' 1956

Note:

Sources
American Society for Testing and Materials (ASTM), “Standard for Metric Practice’. Reprinted from Annual

Book of ASTM Standards.

The preferred metric unit for
force is the newton; for pressure, the
pascal; and for energy. the joule.

dyne 2.780 138 510 x 10* 3.596 943 090 x 10~°

newton 4.448 221 615 2.248 089 431 x 107!

pascal 6.894 757 293 x 10° 1.450377377x 107*

millibar 3.386 4 x 10* 29529 x 1072

Calorie 2.521 644 007 x 107! 3.965 666 831

(kg, thermochem.)

watt-hour 2930710702 x 10! 3.412 141 633

joule § 1.055 055 853 x 10° 9478 171203 x 1074

joule 1.355 817 948 7.375621 493 x 10~}

watt 2930710702 x 107! 3.412 141 633

watt 7.456 998 716 x 102 1.341 022 090 x 1073

watt 7.46 x 10%% 1.340 482 574 x 1073

watt 1.355 817 948 7.375 621493 x 107!

kelvin 1.8% 5.555 555 556 x 107!

°Celsius °C=(°F-32) /1.8% °F = (*Cx 1.8)+32%
Prefix | Symbol | Multiplier Prefix | Symbol | Multiplier
exa E 1018 deci d 107!
peta P 101° centi c 1072
tera T 1012 milli m 1073
giga G 10° micro m 107¢
mega M 10° nano n 107°
kilo k 103 pico p 10712
hecto h 102 fernto f 10718
deka da 10! atto a 10718

U.S. Department of Commerce, National Bureau of Standards, *NBS Guidelines for the Use of the Metric
System'”. Reprinted from Dimensions/NBS. (October 1977).

Error Messages

10
11
12

13

14

15

16

17

Missing option or configuration error. If a statement requires an option which is not loaded, the
option number or option name is given along with error 1. These numbers are listed in the Useful
Tables section. Error 1 without an option number indicates other configuration errors.

Memory overflow. If you get this error while loading a file. the program is too large for the
computer's memory. If the program loads. but you get this error when you press RUN. then
the overflow was caused by the variable declarations. Either way. you need to modify the
program or add more read/write memory.

Line not found in current context. Could be a GOTO or GOSUB that references a non-
existent (or deleted) line. or an EDIT command that refers to a non-existent line label.

Improper RETURN. Executing a RETURN statement without previously executing an
appropriate GOSUB or function call. Also. a RETURN statement in a user-defined function
with no value specified.

Improper context terminator. You forgot to put an END statement in the program. Also
applies to SUBEND and FNEND.

Improper FOR...NEXT matching. Executing a NEXT statement without previously executing
the matching FOR statement. [ndicates improper nesting or overlapping of the loops.

Undefined function or subprogram. Attempt to call a SUB or user-defined function that is not
in memory. Look out for program lines that assumed an optional CALL.

Improper parameter matching. A type mismatch between a pass parameter and a formal
parameter of a subprogram.

Improper number of parameters. Passing either too few or too many parameters to a sub-
program. Applies only to non-optional parameters.

String type required. Attempting to return a numeric from a user-defined string function.
Numeric type required. Attempting to return a string from a user-defined numeric function.

Attempt to redeclare variable. Including the same variable name twice in declarative state-
ments such as DIM or INTEGER.

Array dimensions not specified. Using the ¢ #3 symbol after a variable name when that
variable has never been declared as an array.

OPTION BASE not allowed here. The OPTION BASE statement must appear before any
declarative statements such as DIM or INTEGER. Only one OPTION BASE statement is
allowed in one context.

Invalid bounds. Attempt to declare an array with more than 32 767 elements or with upper
bound less than lower bound.

Improper or inconsistent dimensions. Using the wrong number of subscripts when referencing
an array element.

Subscript out of range. A subscript in an array reference is outside the current bounds of the
array.

593

594 Error Messages

18

19

20

22
24

25

26
27
28
29

30
31
32

33

34

35

36

38

40

41

43

44

46

String overflow or substring error. String overflow is an attempt to put too many characters
into a string (exceeding dimensioned length). This can happen in an assignment. an ENTER
an INPUT, or a READ. A substring error is an attempted violation of the rules for substrings.
Watch out for null strings where you weren’t expecting them.

Improper value or out of range. A value is too large or too small. Applies to items found in a
variety of statements. Often occurs when the number builder overflows {or underflows)
during an /O operation.

INTEGER overflow. An assignment or result exceeds the range allowed for INTEGER vari-
ables. Must be —32 768 thru 32 767.

REAL overflow. An assignment or result exceeds the range allowed for REAL variables.

Trig argument too large for accurate evaluation. Out-of-range argument for a function such as
TAN or LDIR.

Magnitude of ASN or ACS argument is greater than 1. Arguments to these functions must be
in the range —1 thru +1.

Zero to non-positive power, Exponentiation error.
Negative base to non-integer power. Exponentiation error.
LOG or LGT of a non-positive number.

lllegal floating point number. Does not occur as a result of any calculations, but is possible
when a FORMAT OFF /O operation fills a REAL variable with something other than a REAL
number.

SQR of a negative number.
Division (or MOD) by zero.

String does not represent a valid number. Attempt to use “'non-numeric’’ characters as an
argument for VAL, data for a READ. or in response to an INPUT statement requesting a
number.

Improper argument for NUM or RPT$. Null string not allowed.

Referenced line not an IMAGE statement. A USING clause contains a line identifier. and the
line referred to is not an IMAGE statement.

Improper image. See IMAGE or the appropriate keyword in the BASIC Language Reference.

Out of data in READ. A READ statement is expecting more data than is available in the
referenced DATA statements. Check for deleted lines. proper OPTION BASE. proper use of
RESTORE. or typing errors.

TAB or TABXY not allowed here. The tab functions are not allowed in statements that contain
a USING clause. TABXY is allowed only in a PRINT statement.

Improper REN, COPYLINES. or MOVELINES command. Line numbers must be whole
numbers from 1 to 32 766. This may also result from a COPYLINES or MOVELINES state-
ment whose destination line numbers lie within the source range.

First line number greater than second line number. Parameters out of order in a statement like
SAVE. LIST. or DEL.

Matrix must be square. The MAT functions: IDN, INV. and DET require the array to have
equal numbers of rows and columns.

Result cannot be an operand. Attempt to use a matrix as both result and argument in a MAT
TRN or matrix multiplication.

Attempting a SAVE when there is no program in memory.

47

49

51

52

53

54

55

56

58

59

60

62

64

65

66
67

68

72

73

76

77

Error Messages 595

COM declarations are inconsistent or incorrect. Includes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for the first time in a subprogram.

Branch destination not found. A statement such as ON ERROR or ON KEY refers to a line that
does not exist. Branch destinations must be in the same context as the ON...statement.

File not currently assigned. Attempting an ON/OFF END statement with an unassigned 1/O path
name.

Improper mass storage unit specifier. The characters used for a msus do not form a valid specifier.
This could be a missing colon, too many parameters, illegal characters, etc.

Improper file name. File names are limited to 10 characters. Foreign characters are allowed, but
punctuation is not.

Duplicate file name. The specified file name already exists in directory. It is illegal to have two files
with the same name on one volume.

Directory overflow. Although there may be room on the media for the file, there is no room in the
directory for another file name. Discs initialized by BASIC have room for over 100 entries in the
directory, but other systems may make a directory of a different size.

File name is undefined. The specified file name does not exist in the directory. Check the contents
of the disc with a CAT command.

Improper file type. Many mass storage operations are limited to certain file types. For example,
LOAD is limited to PROG files and ASSIGN is limited to ASCII and BDAT files.

End of file or buffer found. For files: No data left when reading a file, or no space left when writing
a file. For buffers: No data left for an ENTER, or no buffer space left for an QUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

End of record found in random mode. Attempt to ENTER a field that is larger than a defined
record.

Protect code violation. Failure to specify the protect code of a protected file, or attempting to
protect a file of the wrong type.

Mass storage media overflow. There is not enough contiguous free space for the specified file size.
The disc is full.

Incorrect data type. The array used in a graphics operation, such as GLOAD, is the wrong type
(INTEGER or REAL).

INITIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or dirty.

lllegal mass storage parameter. A mass storage statement contains a parameter that is out of
range, such as a negative record number or an out of range number of records.

Syntax error occurred during GET. One or more lines in the file could not be stored as valid
program lines. The offending lines are usually listed on the system printer. Also occurs if the first
line in the file does not start with a valid line number.

Disc controller not found or bad controller address. The msus contains an improper device
selector, or no external disc is connected.

Improper device type in mass storage unit specifier. The msus has the correct general form, but
the characters used for a device type are not recognized.

Incorrect unit number in mass storage unit specifier. The msus contains a unit number that does
not exist on the specified device.

Attempt to purge an open file. The specified file is assigned to an I/O path name which has not
been closed.

596 Error Messages

78

79

80

81

82

83

84
85
87
88

89

90
93

100
101
102
103

105

106

107

117

118

120

121
122

Invalid mass storage volume label. Usually indicates that the media has not been initialized on
a compatible system. Could also be a bad disc.

File open on target device. Attempt to copy an entire volume with a file open on the destina-
tion disc.

Disc changed or not in drive. Either there is no disc in the drive or the drive door was opened
while a file was assigned.

Mass storage hardware failure. Also occurs when the disc is pinched and not turning. Try
reinserting the disc.

Mass storage unit not present. Hardware problem or an attempt to access a left-hand drive on
the Model 226.

Write protected. Attempting to write to a write_protected disc. This includes many operations
such as PURGE, INITIALIZE. CREATE. SAVE. OUTPUT. etc.

Record not found. Usually indicates that the media has not been initialized.
Media not initialized. (Usually not produced by the internal drive.)
Record address error. Usually indicates a problem with the media.

Read data error. The media is physically or magnetically damaged. and the data cannot be
read.

Checkread error. An error was detected when reading the data just written. The media is
probably damaged.

Mass storage system error. Usually a problem with the hardware or the media.

Incorrect volume code in MSUS. The MSUS contains a volume number that does not exist on
the specified device.

Numeric IMAGE for string item.
String IMAGE for numeric item.
Numeric field specifier is too large. Specifying more than 256 characters in a numeric field.

Item has no corresponding IMAGE. The image specifier has no fields that are used for item
processing. Specifiers such as # 3} / are not used to process the data for the item list.
[tem-processing specifiers include things like K D B A

Numeric IMAGE field too small. Not enough characters are specified to represent the number.

IMAGE exponent field too small. Not enough exponent characters are specified to represent
the number.

IMAGE sign specifier missing. Not enough characters are specified to represent the number.
Number would fit except for the minus sign.

Too many nested structures. The nesting level is too deep for such structures as FOR,
SELECT. IF, LOOP, etc.

Too many structures in context. Refers to such structures as FOR/NEXT. [F"'THEN/ELSE,
SELECT/CASE, WHILE. etc.

Not allowed while program running. The program must be stopped before you can execute
this command.

Line not in main program. The run line specified in a LOAD or GET is not in the main context.

Program is not continuable. The program is in the stopped state, not the paused state. CONT
is allowed only in the paused state.

Error Messages 597

126 Quote mark in unquoted string. Quote marks must be used in pairs.
127 Statements which affect the knob mode are out of order.
128 Line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the keyboard contained a CHR$(255) fol-
lowed by an illegal byte.

132 Keycode buffer overflow. Trying to send too many characters to the keyboard buffer with an
OUTPUT 2 statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 READIO/WRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero than 10~ (approximately).

140 Too many symbols in the program. Symbols are variable names, /O path names, COM block
names, subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.
142 Variable not allocated. Attempt to DEALLOCATE a variable that was not allocated.

143 Reference to missing OPTIONAL parameter. The subprogram is trying to use an optional
parameter that didn’t have any value passed to it. Use NPAR to check the number of passed
parameters.

145 May not build COM at this time. Attempt to add or change COM when a program is running.
For example. a program does a LOADSUB and the COM in the new subprogram does not
match existing COM.

146 Duplicate line label in context. There cannot be two lines with the same line label in one
context.

150 lllegal interface select code or device selector. Value out of range.
152 Parity error.

153 Insufficient data for ENTER. A statement terminator was received before the variable list was
satisfied.

154 String greater than 32 767 bytes in ENTER.
155 Improper interface register number. Value out of range or negative.
156 lllegal expression type in list. For example, trying to ENTER into a constant.

157 No ENTER terminator found. The variable list has been satisfied, but no statement terminator
was received in the next 256 characters. The # specifier allows the statement to terminate
when the last item is satisfied.

158 Improper image specifier or nesting images more than 8 deep. The characters used for an
image specifier are improper or in an improper order.

159 Numeric data not received. When entering characters for a numeric field, an item terminator
was encountered before any ‘‘numeric”’ characters were received.

160 Attempt to enter more than 32 767 digits into one number.

163 Interface not present. The intended interface is not present, set to a different select code, or is
malfunctioning.

164 lllegal BYTE/WORD operation. Attempt to ASSIGN with the WORD attribute to a non-word
device.

598 Error Messages

165
167

168

170

171

172

173

174

177

178

301
303
304
306
308
310
313

314

315

316

317

318

319

324
325

Image specifier greater than dimensioned string length.

Interface status error. Exact meaning depends upon the interface type. With HP-IB, this can
happen when a non-controller operation by the computer is aborted by the bus.

Device timeout occurred and the ON TIMEOUT branch could not be taken.

/O operation not allowed. The 1/O statement has the proper form, but its operation is not
defined for the specified device. For example, using an HP-IB statement on a non-HP-IB
interface or directing a LIST to the keyboard.

Illegal 1:O addressing sequence. The secondary addressing in a device selector is improper or
primary address too large for specified device.

Peripheral error. PSTS line is false. If used, this means that the peripheral device is down. If
PSTS is not being used, this error can be suppressed by using control register 2 of the GPIO.

Active or system controller required. The HP-IB is not active controller and needs to be for
the specified operation.

Nested /O prohibited. An I/O statement contains a user-defined function. Both the original
statement and the function are trying to access the same file or device.

Undefined I/O path name. Attempting to use an I/O path name that is not assigned to a device
or file.

Trailing punctuation in ENTER. The trailing comma or semicolon that is sometimes used at
the end of OUTPUT statements is not allowed at the end of ENTER statements.

Cannot do while connected.

Not allowed when trace active.

Too many characters without terminator.

Interface card failure. The datacomm card has failed self-test.
lllegal character in data. Datacomm error.

Not connected. Datacomm error.

USART receive buffer overflow. Overrun error detected. Interface card is unable to keep up
with incoming data rate. Data has been lost.

Receive buffer overflow. Program is not accepting data fast enough to keep up with incoming
data rate. Data has been lost.

Missing data transmit clock. A transmit timeout has occurred because a missing data clock
prevented the card from transmitting. The card has disconnected from the line.

CTS false too long. The interface card was unable to transmit for a predetermined period of
time because Clear-To-Send was false on a half-duplex line. The card has disconnected from
the line.

Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect (if full duplex) went
inactive for too long.

No activity disconnect. The card has disconnected from the line because no data was trans-
mitted or received for a predetermined length of time.

Connection not established. Data Set Ready or Data Carrier Detect (if full duplex) did not
become active within a predetermined length of time.

Card trace buffer overflow.

lllegal databits/parity combination. Attempting to program 8 bits-per-character and a parity of
“1" or 0.

Error Messages 599

326 Register address out of range. A control or status register access was attempted to a non-
existent register.

327 Register value out of range. Attempting to place an illegal value in a control register.
328 USART Transmit underrun.
330 User-defined LEXICAL ORDER IS table size exceeds array size.

331 Repeated value in pointer. A MAT REORDER vector has repeated subscripts. This error is not
always caught.

332 Non-existent dimension given. Attempt to specify a non-existent dimension in a MAT REOR-
DER operation.

333 Improper subscript in pointer. A MAT REORDER vector specifies a non-existent subscript.

334 Pointer size is not equal to the number of records. A MAT REORDER vector has a different
number of elements than the specified dimension of the array.

335 Pointer is not a vector. Only single-dimension arrays (vectors) can be used as the pointer in a
MAT REORDER or a MAT SORT statement.

337 Substring key is out-of-range. The specified substring range of the sort key exceeds the
dimensioned length of the elements in the array.

338 Key subscript out-of-range. Attempt to specify a subscript in a sort key outside the current
bounds of the array.

340 Mode table too long. User-defined LEXICAL ORDER IS mode table contains more than 63
entries.

341 Improper mode indicator. User-defined LEXICAL ORDER IS table contains an illegal com-
bination of mode type and mode pointer.

342 Not a single-dimension integer array. User-defined LEXICAL ORDER iS mode table must be
a single-dimension array of type INTEGER.

343 Mode pointer is out of range. User-defined LEXICAL ORDER IS table has a mode pointer
greater than the existing mode table size.

344 1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table contains an entry
indicating an improper number of 1 for 2 secondaries.

345 CASE expression type mismatch. The SELECT statement and its CASE statements must refer
to the same general type, numeric or string.

346 INDENT parameter out-of-range. The parameters must be in the range: 0 thru eight charac-
ters less than the screen width.

347 Structures improperly matched. There is not a corresponding number of structure beginnings
and endings. Usually means that you forgot a statement such as END IF, NEXT, END
SELECT, etc.

349 CSUB has been modified. A contiguous block of compiled subroutines has been modified
since it was loaded. A single module that shows as multiple CSUB statements has been
altered because program lines were inserted or deleted.

353 Data link failure.

369-399 Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To determine the
Pascal error number, subtract 400 from the BASIC error number. Information on the Pascal
error can be found in the Pascal Workstation System manual.

600 Error Messages

401

403

427
450
451
453
454
455
456
457
458
459
460
462
465
471
481
482
483
484
485
488
511
600

601

602

603

604

605
606

Bad system function argument. An invalid argument was given to a time. date, base conver-
sion, or SYSTEM$ function.

Copy failed: program modification incomplete. An error occurred during a COPYLINES or
MOVELINES resulting in an incomplete operation. Some lines may not have been copied or
moved.

Priority may not be lowered.

Volume not found—SRM error.

Volume labels do not match—SRM error.

File in use—SRM error.

Directory formats do not match—SRM error.
Possibly corrupt file—SRM error.

Unsupported directory operation—SRM error.
Passwords not supported —SRM error.

Unsupported directory format—SRM error.

Specified file is not a directory—SRM error.

Directory not empty—SRM error.

Invalid password—SRM error.

Invalid rename across volumes—SRM error.
TRANSFER not supported by the interface.

File locked or open exclusively—SRM error.

Cannot move a directory with a RENAME operation—SRM error.
System down—SRM error.

Password not found—SRM error.

Invalid volume copy—SRM error.

DMA hardware required. HP 9885 disc drive requires a DMA card or is malfunctioning.
The result array in a MAT INV must be of type REAL.

Attribute cannot be modified. The WORD/BYTE mode cannot be changed after assigning the
/O path name.

Improper CONVERT lifetime. When the CONVERT attribute is included in the assignment of
an I/O path name, the name of a string variable containing the conversion is also specified.
The conversion string must exist as long as the /O path name is valid.

Improper BUFFER lifetime. The variable designated as a buffer during an I'O path name
assignment must exist as long as the I/O path name is valid.

Variable was not declared as a BUFFER. Attempt to assign a variable as a buffer without first
declaring the variable as a BUFFER.

Bad source or destination for a TRANSFER statement. Transfers are not allowed to the CRT,
keyboard. or tape backup on CS80 drives. Buffer to buffer or device to device transfers are
not allowed.

BDAT file type required. Only BDAT files can be used in a TRANSFER operation.

Improper TRANSFER parameters. Conflicting or invalid TRANSFER parameters were speci-
fied. such as RECORDS without and EOR clause, or DELIM with an outbound TRANSFER.

Error Messages 601

607 Inconsistent attributes. Such as CONVERT or PARITY with FORMAT OFF.

609 IVAL or DVAL result too large. Attempt to convert a binary, octal, decimal, or hexadecimal
string into a value outside the range of the function.

612 BUFFER pointers in use. Attempt to change one or more buffer pointers while a TRANSFER
is in progress.

700 Improper plotter specifier. The characters used as a plotter specifier are not recognized. May
be misspelled or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to P2Z<=P1 or VIEWPORT upper
bound and CLIP limits.

705 VIEWPORT or CLIP beyond hard clip limits.
708 Device not initialized.

713 Request not supported by specified device. Trying to equate color CRT characteristics with an
external device; such as COLOR MAP on a plotter.

733 GESCAPE opcode not recognized. Only values 1 thru 5 can be used.
900 Undefined typing aid key.
901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or DEF FN statement without deleting its
entire context. Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was renumbering during an insert, all available line
numbers were used between insert location and end of program.

904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the system. Maximum line length is two lines on
the CRT.

906 SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement into the
middle of a context. Subprograms must be appended at the end.

909 May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.

910 Identifier not found in this context. The keyboard-specified variable does not already exist in
the program. Variables cannot be created from the keyboard; they must be created by
running a program.

911 Improper I/O list.

920 Numeric constant not allowed.
921 Numeric identifier not allowed.
922 Numeric array element not allowed.
923 Numeric expression not allowed.
924 Quoted string not allowed.

925 String identifier not allowed.

926 String array element not allowed.
927 Substring not allowed.

928 String expression not allowed.
929 1/O path name not allowed.

602 Error Messages

930
931
932

935
936

937
939

940
942

943

946

947
948

949

950
951

961

962
963
977

980

982
983

985
987

Numeric array not allowed.
String array not allowed.

Excess keys specified. A sort key was specified following a key which specified the entire
record.

Identifier is too long: 15 characters maximum.

Unrecognized character. Attempt to store a program line containing an improper name or
illegal character.

Invalid OPTION BASE. Only 0 and 1 are allowed.

OPTIONAL appears twice. A parameter list may have only one OPTIONAL keyword. All
parameters listed before it are required. all listed after it are optional.

Duplicate formal parameter name.

Invalid IYO path name. The characters after the @ are not a valid name. Names must start
with a letter.

Invalid function name. The characters after the FN are not a valid name. Names must start
with a letter.

Dimensions are inconsistent with previous declaration. The references to an array contain a
different number of subscripts at different places in the program.

Invalid array bounds. Value out of range, or more than 32 767 elements specified.

Multiple assignment prohibited. You cannot assign the same value to multiple variables by
stating ¥ =Y =2=0. A separate assignment must be made for each variable.

This symbol not allowed here. This is the general *'syntax error’” message. The statement you
typed contains elements that don't belong together. are in the wrong order, or are misspelled.

Must be a positive integer.

Incomplete statement. This keyword must be followed by other items to make a valid state-
ment.

CASE expression type mismatch. The CASE line contains items that are not the same general
type, numeric or string.

Programmable only: cannot be executed from the keyboard.
Command only: cannot be stored as a program line.

Statement is too complex. Contains too many operators and functions. Break the expression
down so that it is performed by two or more program lines.

Too many symbols in this context. Symbols include variable names, ;O path names, COM
block names, subprogram names. and line identifiers.

Too many subscripts: maximum of six dimensions allowed.

Wrong type or number of parameters. An improper parameter list for a machine-resident
function.

Invalid quoted string.

Invalid line number: must be a whole number 1 thru 32 766.

603

Keyword Summary

Program Entry/Editing

CHANGE Performs search and replace operations
while editing a program.

COPYLINES Copies program lines from one place to
another.

EDIT Accesses a program edit mode to enter
new program lines or modify existing
ones. Also used with typing aids.

FIND Searches for a character sequence in a
program.

DEL Deletes specified program lines from
memory.

DELSUB Deletes specified subprograms from
memory.

INDENT Indents a program to reflect its structure.

LIST Lists program lines or typing aids.

LIST BIN Lists options in the system.

MOVELINES Moves program lines from one place to
another.

REM and ! Allows comments on program lines.

REN Renumbers programs.

SECURE Makes program lines unlistable.

XREF Provides a cross-reference to all identi-
fiers used in a program.

Program Debugging

ERRDS Returns the device selector involved in
the last I/O error.

ERRL Indicates if an error occurred during ex-
ecution of a specified line.

ERRM$ Returns the text of the last error message.

ERRN Returns the most recent program execu-
tion error.

TRACE ALL Allows tracing of program flow and vari-
able assignments during program execu-
tion.

TRACE PAUSE Causes program execution to pause at a
specified line.

TRACE OFF Disables TRACE ALL and TRACE

PAUSE.

Memory Allocation

ALLOCATE

COM

DEALLOCATE
DIM

INTEGER

- OPTION BASE

REAL

SCRATCH
SYSBOOT

General Math

/

1

ABS
DIV

DROUND

EXP
FRACT

INT

LET
LGT

LOG

Allocates memory for arrays or string
variables during program execution.

Reserves memory for variables in a com-
mon area for access by more than one
context.

Reclaims memory previously allocated.

Dimensions and reserves memory for
REAL numeric arrays and strings.

Dimensions and reserves memory for IN-
TEGER variables and arrays.

Specifies the default lower bound for
arrays.

Dimensions and reserves memory for full
precision variables and arrays.

Erases selected portions of memory.

Returns system control to the boot ROM.

Addition operator.

Subtraction operator.

Multiplication operator.

Division operator.

Exponentiation operator.

Returns an argument’s absolute value.

Divides one argument by another and re-
turns the integer portion of the quotient.

Returns the value of an expression,
rounded to a specified number of digits.

Raises the base e to a specified power.

Returns the fractional portion of an ex-
pression.

Returns the integer portion of an ex-
pression.

Assigns values to variables.

Returns the log (base 10) of an argu-
ment.

Returns the natural logarithm (base e) of
an argument.

604 Keyword Summary

MAX

MAXREAL
MIN

MINREAL
MOD
MODULO
Pl
PROUND

RANDOMIZE

RES
RND
SGN
SQR

Returns the largest value in a list of argu-
ments.

Returns the largest number available.

Returns the smallest value in a list of
arguments.

Returns the smallest number available.
Returns the remainder of integer division.
Return the molulo of division.

Returns an approximation of .

Returns the value of an expression.
rounded to the specified power of ten.

Modifies the seed used by the RND func-
tion.

Returns last live keyboard numeric result.
Returns a pseudo-random number.
Returns the sign of an argument.

Returns the square root of an argument.

Binary Functions

BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Returns the bit-by-bit logical-and of two
arguments.

Returns the bit-by-bit complement of an
argument.

Returns the bit-by-bit exclusive-or of two
arguments.

Returns the bit-by-bit inclusive-or of two
arguments.

Returns the state of a specified bit of an
argument.

Returns a value obtained by shifting an
argument’s binary representation a num-
ber of bit positions, with wrap-around.

Returns a value obtained by shifting an
argument’s binary representation a num-
ber of bit positions, without wrap-
around.

Trigonometric Operations

ACS
ASN
ATN
COS
DEG
RAD
SIN

TAN

Returns the arccosine of an argument.
Returns the arcsine of an argument.
Returns the arctangent of an argument.
Returns the cosine of an angle.

Sets the degrees mode.

Sets the radians mode.

Returns the sine of an angle.

Returns the tangent of an angle.

String Operations

&
CHR$

DVAL

DVALS$

IVAL

IVAL$

LEN

LEXICAL ORDER IS

LWC$

NUM

POS

REV$

RPT$

TRIM$

UPC$

VAL

VAL$

Concatenates two string expressions.

Converts a numeric value into an ASCII
character.

Converts an alternate-base representa-
tion into a numeric value.

Converts a numeric value into an alter-
nate-base representation.

Converts an alternate-base representa-
tion into an INTEGER number.

Converts an INTEGER into an alternate-
base representation.

Returns the number of characters in a
string expression.

Determines the collating sequence used
in string comparisons.

Returns the lowercase value of a string
expression.

Returns the decimal value of the first
character in a string.

Returns the position of a string within a
string expression.

Reverses the order of the characters in a
string expression.

Repeats the characters in a string ex-
pression a specified number of times.

Removes the leading and trailing blanks
from a string expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression representing
a specified numeric value.

Logical Operators

AND

EXOR

NOT

OR

Returns 1 or O based on the logical AND
of two arguments.

Returns 1 or 0 based on the logical exclu-
sive-or of two arguments.

Returns 1 or O based on the logical com-
plement of an argument.

Returns 1 or O based on the logical inclu-
sive-or of two arguments.

Comparison Operators

V. V. A A A
Il

Mass Storage
ASSIGN

CAT
CHECKREAD
COPY
CREATE ASCII
CREATE BDAT

CREATE DIR
GET

INITIALIZE
LOAD

LOAD BIN
LOAD KEY

LOADSUB

LOCK

MASS STORAGE IS
MSI

PRINT LABEL
PROTECT

PURGE
READ LABEL

RENAME

SAVE
RE-SAVE

Equality.

Inequality.

Less than.

Less than or equal to.
Greater than.

Greater than or equal to.

Assigns an 1/O path name and attributes
to a file.

Lists the contents of the mass storage
media’s directory.

Enables or disables read-after-write veri-
fication of a mass storage operation.

Provides a method of copying mass stor-
age files and volumes.

Creates an ASClI-type file on the mass
storage media.

Creates a BDAT-type file on the mass
storage media.

Creates an SRM directory file.

Reads an ASCII file into memory as a
program.

Prepares the mass storage media for use.
Loads a PROG-type file into memory.
Loads a BIN-type file into memory.

Loads typing-aid definitions for the soft-
keys.

Loads BASIC subprograms from a
PROG-type file into memory.

Prevents other SRM workstation compu-
ters from accessing the remote file to
which the I/O path is currently assigned.

Specifies the default mass storage device.

Wirites a string expression to the label of a
media.

Specifies a protect code for PROG,
BDAT, and BIN files.

Deletes a file entry from the directory.

Reads the label of a media to a string
variable.

Changes a file’s name.

Creates an ASCII file and copies BASIC

program lines from memory into the file.

STORE
RE-STORE

STORE KEY
RE-STORE KEY
STORE SYSTEM

UNLOCK

Keyword Summary 605

Creates a PROG file and copies BASIC
program lines from memory into the file
in an internal format.

Creates a BDAT file and stores the typ-
ing-aid definitions into the file.

Stores BASIC and options currently in
memory into a SYSTM file.

Removes exclusive access to a remote
(SRM) file set by the LOCK statement.

Program Control

CALL
CONT

DEF FN
FNEND

END

FN
FOR...NEXT
GOTO
GOSUB
IF...THEN

ELSE
LOOP

EXIT IF
NPAR

KBD$
KNOBX
KNOBY

ON expression
PAUSE

REPEAT...UNTIL

RETURN

RETURN expression

Transfers program execution to a speci-
fied subprogram and passes parameters.

Resumes execution of a paused program.

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program seg-
ment.

Invokes a user-defined function.

Defines a loop which is repeated a speci-
fied number of times.

Transfers program execution to a speci-
fied line.

Transfers program execution to a speci-
fied subroutine.

Provides a conditional execution of a
program segment.

Provides looping with conditional exit.

Returns the number of parameters
passed to the current subprogram.

Returns the contents of the ON KBD
buffer.

Returns the number of horizontal knob
pulses.

Returns the number of vertical knob
pulses.

Transfers program execution to one of
several locations based on the value of an
expression.

Suspends program execution.

Allows execution of a program segment
until the specified condition is true.

Transfers program execution from a sub-
routine to the line following the invoking
GOSUB.

Transfers program execution from a user-
defined function by returning a value to
the calling context.

606 Keyword Summary

RUN
SELECT...CASE
STOP

SUB

SUBEND
SUBEXIT

SUSPEND/
RESUME
INTERACTIVE
SYSTEM$
WAIT

WAIT FOR EOR

WAIT FOR EOT

WHILE

Starts program execution.

Allows execution of one program seg-
ment of several.

Terminates execution of the program.

Defines the bounds of a subprogram.

Transfers control from within a subpro-
gram to the calling context.

Allows suspending and resuming interac-
tive keyboard operation while a program
is running.

Returns selected system status and con-
figuration information.

Causes program execution to wait a spe-
cified number of seconds.

Causes program execution to wait for an
end-of-record during a TRANSFER.

Causes program execution to wait for an
end-of-transfer.

Allows execution of a program segment
while the specified condition is true.

Graphics Control

ALPHA ON/OFF
AREA

CLIP

DIGITIZE

DUMP GRAPHICS

DUMP DEVICE 1S

GCLEAR
GESCAPE

GINIT

GLOAD

GRAPHICS ON/OFF
GRAPHICS INPUT IS

GSTORE

PLOTTERIS
RATIO

Turns the alpha display on or off.
Selects an area fill color.
Redefines a soft-clip area.

Inputs the coordinates of a digitized
point.

Copies the contents of the graphics dis-
play to a printing device.

Specifies the device for DUMP opera-
tions.

Clears the graphics area.

Sends device-dependent information to
the display device.

Resets graphics parameters to power-on
values.

Loads the graphics display from an INTE-
GER array.

Turns the graphics display on or off.

Specifies the device for digitizing opera-
tions.

Copies the contents of the graphics dis-
play to an INTEGER array.

Specifies the default plotting device.

Returns the physical aspect ratio of the
plotter's hard-clip limits.

READ LOCATOR

" SET ECHO

SET LOCATOR

SET PEN

SHOW

TRACK...ON/OFF

VIEWPORT

WHERE

WINDOW

Samples the locator device. without wait
ing for a digitize signal.

Specifies the coordinates of an echo on
the current plotting device.

Sets the locator position on the input de
vice.

Defines the color of entries in the color
map.

Defines plotting units that will appear in
the VIEWPORT area.

Enables and disables locator tracking on
the current display device.

Specifies an area in which WINDOW and
SHOW statements are mapped.

Returns the current logical position of the
pen.

Specifies the min and max values for the
plotting area specified by VIEWPORT.

Graphics Plotting

DRAW
LINE TYPE
IDRAW

IMOVE

IPLOT

MOVE

PDIR

PEN
PENUP
PIVOT

PLOT

POLYGON
POLYLINE
RECTANGLE

RPLOT

Draws a line to a specified point.
Selects a plotting line type.

Draws a line incrementally to a specified
point.

Moves the pen incrementally to a speci
fied point.

Draws a line incrementally to the speci-
fied point with optional pen control.

Moves the pen to a specified point.

Specifies rotation for IPLOT. RPLOT.
RECTANGLE, POLYGON and POLY
LINE.

Selects a plotter pen.
Lifts the pen from the plotting surface.

Specifies rotation for lines made with
moves, draws, plots. polygons. or rec-
tangles.

Draws a line to the specified point with
optional pen control.

Draws all or part of a closed polygon.
Draws all or part of an open polygon.

Draws a rectangle that can be filled and
edged.

Draws a line relative to a movable origin
with optional pen control.

Graphic Axes and Labeling

AXES
CSIZE

FRAME

GRID
LABEL
LDIR
LORG

SYMBOL

Input/Output

ABORTIO
ASSIGN

BEEP
BREAK
CONTROL

CRT
DATA

DISP
DUMP ALPHA

DUMP DEVICE IS
ENTER

IMAGE

INPUT
KBD
LINPUT
OUTPUT
PRINT

PRINTALL IS

Draws axes with optional tick marks.

Sets the size and aspect ratio for labeled
characters.

Draws a frame around the current clip-
ping area.

Draws a full grid pattern for axes.
Draws alphanumeric labels.
Defines the angle for drawing labels.

Specifies a labeling location relative to
the pen location.

Allows labeling with user-defined sym-
bols.

Terminates an active TRANSFER.

Associates an [/O path name and attri-
butes with a device, group of devices,
mass storage file, or buffer.

Produces one of 63 audible tones.
Sends a Break signal on a serial interface.

Sends control information to an interface
or a table associated with an I/O path
name.

Returns the device selector of the CRT.

Specifies data accessible via READ state-
ments.

Outputs items to the CRT display line.

Transfers contents of the CRT output
area to a specified device.

Specifies a device for DUMP ALPHA and
DUMP GRAPHICS operations.

Inputs data from a device, file, string, or
buffer to a list of variables.

Provides formats for use with ENTER,
OUTPUT, DISP,LABEL and PRINT op-
erations.

Inputs data from the keyboard to a list of
variables.

Returns the device selector of the
keyboard.

Inputs literal data from the keyboard to a
string variable.

Outputs items to a specified device, file,
string, or buffer.

Outputs items to the current PRINTER IS
device.

Specifies a device for logging messages
sent to the display.

PRINTER IS

PRT

READ
READIO

RESET

RESTORE

SC

STATUS

TAB

TABXY

TRANSFER
WRITEIO

HP-IB Control

ABORT
CLEAR

LOCAL

LOCAL LOCKOUT

PASS CONTROL

PPOLL

PPOLL CONFIGURE

PPOLL RESPONSE

Keyword Summary

Specifies a device for PRINT, CAT and
LIST statements.

Returns 701, usually the device selector
of an external printer.

Inputs data from DATA lists to variables.

Reads the contents of the specified hard-
ware registers on the specified interface.

Resets an interface or pointers of an /O
path.

Causes a READ statement to access the
specified DATA statement.

Returns the interface select code associ-
ated with an /O path.

Returns the value from a specified inter-
face status register.

Moves the print position ahead to a speci-
fied point; used within PRINT and DISP
statements.

Specifies the print position on the internal
CRT; used with PRINT statements.

Initiates unformatted /O transfers.

Writes an integer representation of the
register data to the specified hardware
register on the specified interface.

Terminates bus activity and asserts IFC.

Places specified devices in a device-
dependent state.

Returns specified devices to their local
state.

Sends the LL.O message, disabling all de-
vice's front-panel controls.

Passes Active Controller capability to
another device.

Returns a parallel poll byte from the bus.

Programs a parallel poll bit for a specified
device.

Defines the computers response to a par-
allel poll.

PPOLL UNCONFIGURE Disables parallel poll for specified de-

REMOTE

REQUEST

SEND

SPOLL

TRIGGER

vices.

Sets specified devices to their remote
state.

Sends a service request to the Active
Controller.

Sends explicit command and data mes-
sages on the bus.

Returns a serial poll byte from a specified
device.

Sends the trigger message to specified
devices.

607

608 Keyword Summary

Array Operations

BASE Returns the lower bound of a dimension
of an array.

DET Returns the determinant of a matrix.

DOT Returns the dot product of two vectors.

MAT Performs various operations on numeric
and string arrays.

MAT REORDER Reorders the elements in an array
according to the subscript list in a vector.

MAT SORT Sorts an array along one dimension
according to lexical or numeric order.

RANK Returns the number of dimensions in an
array.

REDIM Changes the subscript range of an array.

SIZE Returns the number of elements in a
dimension of an array.

SUM Returns the sum of all the elements in a
numeric array.

Clock and Calendar

DATE Converts a formatted date into a number
of seconds.

DATE$ Converts a number of seconds into a for-
matted date.

SET TIME Sets the time of day on the real-time
clock

SET TIMEDATE Sets the time and date on the real-time
clock.

TIME Converts a formatted time of day into a
number of seconds past midnight.

TIME$ Converts a number of seconds past mid-
night into a formatted time of day.

TIMEDATE Returns the value of the real-time clock.

Event-Initiated Branching

"ENABLE

DISABLE

ENABLE INTR
DISABLE INTR

ON CYCLE
OFF CYCLE

ON DELAY
OFF DELAY

ON END
OFF END

ON EOR
OFF EOR

ONEOT
OFF EOT

ON ERROR
OFF ERROR

ON INTR
OFF INTR

ON KBD
OFF KBD

ONKEY...LABEL
OFF KEY

ON KNOB
OFF KNOB

ON SIGNAL
OFF SIGNAL

ON TIME
OFF TIME

ON TIMEOUT
OFF TIMEOUT

SIGNAL
SYSTEM PRIORITY

Enables or disables event-initiated
branching (except for ON END, ON
ERROR, and ON TIMEOUT).

Enables or disables interrupts defined by
the ON INTR statement.

Sets up an event-initiated branch at
periodic intervals.

Sets up an event-initiated branch after a
specified elapsed time.

Sets up an event-initiated branch when
an end-of-file condition occurs.

Sets up an event-initiated branch when
an end-of-record occurs during a
TRANSFER.

Sets up an event-initiated branch when
an end-of-transfer occurs.

Sets up an event-initiated branch when a
trappable program error occurs.

Sets up an event-initiated branch when a
specified interface card generates an in-
terrupt.

Sets up an event-initiated branch when a
key is pressed.

Sets up an event-initiated branch when a
specified softkey is pressed.

Sets up an event-initiated branch when
the knob (cursor wheel) is rotated.

Sets up an event-initiated branch when a
software interrupt is generated.

Sets up an event-initiated branch when a
specified time of day is reached.

Sets up an event-initiated branch when
an

[/O timeout occurs on a specified inter-
face.

Generates a software interrupt.

Sets a minimun level of system priority
for event-initiated branches.

ABORT
ABORTIO
ABS

ACS

ALL
ALLOCATE
ALPHA
AND
AREA
ASCII
ASN
ASSIGN
ATN
AXES

BASE
BDAT
BEEP
BIN
BINAND
BINCMP
BINEOR
BINIOR
BIT
BREAK
BUFFER
BY
BYTE

CALL

CASE

CAT
CHANGE
CHECKREAD
CHR$
CLEAR
CLIP

CM

CMD
COLOR
COM
CONFIGURE
CONT
CONTROL
CONVERT
COPY
COPYLINES
COoS
COUNT
CREATE
CRT

CSIZE
CSUM
CYCLE

DATA

DATE

DATE$
DEALLOCATE
DEF

DEG
DEL
DELAY
DELETE
DELIM
DELSUB
DES

DET
DEVICE
DIGITIZE
DIM

DIR
DISABLE
DISP

DIV

DOT
DRAW
DROUND
DUMP
DVAL
DVAL$

ECHO
EDGE
EDIT
ELSE
ENABLE
END
ENTER
EOL
EOR
EOT
ERRDS
ERRL
ERRM$
ERRN
ERROR
EVEN
EXIT
EXOR
EXP
EXPANDED

FILL
FIND

FN
FNEND
FOR
FORMAT
FRACT
FRAME
FRENCH
FROM
GCLEAR
GERMAN
GESCAPE
GET
GINIT
GLOAD
GO

Vocabulary

The following list contains all the words which are recognized by Series 200/300 computers
with BASIC 4.0. Each individual word is some part of one or more valid statements or func-
tions. These words cannot be used as variable names unless you mix their letter case.

GOSUB
GOTO
GRAPHICS
GRID
GSTORE

HEADER

IDN
IDRAW

IF

IMAGE
IMOVE

IN

INDENT
INDEX
INITIALIZE
INPUT

INT
INTEGER
INTENSITY
INTERACTIVE
INTR

INV

10

IPLOT

IS

IVAL
IVAL$

KBD
KBD$
KEY
KNOB
KNOBX
KNOBY

LABEL
LDIR

LEN

LET
LEXICAL
LGT

LINE
LINPUT
LIST
LISTEN
LL

LN

LOAD
LOADSUB
LOCAL
LOCATE
LOCATOR
LOCK
LOCKOUT
LOG
LOOP
LORG
LWC$

MANAGER
MAP
MASS
MAT

MAX
MAXREAL
MIN
MINREAL
MLA

MOD
MODE
MODULO
MOVE
MOVELINES
MSI

MTA

NEXT
NF
NO
NOT
NPAR
NUM
NV

OoDD

OFF

ON

ONE
OPTION
OPTIONAL
OR
ORDER
OouT
OUTPUT

PAIRS
PARITY
PASS
PAUSE
PDIR

PEN
PENUP

Pl

PIVOT
PLOT
PLOTTER
POLYGON
POLYLINE
POS
PPOLL

PRINT

PRINTALL
PRINTER
PRIORITY
PROTECT
PROUND
PRT
PURGE

RAD
RANDOMIZE
RANK
RATIO

RE

READ
READIO
REAL
RECORDS
RECOVER
RECTANGLE
REDIM
REM
REMOTE
REN
RENAME
REORDER
REPEAT
REQUEST
RES
RE-SAVE
RESET
RESPONSE
RESTORE
RE-STORE
RESUME
RETURN
REV$

RND
ROTATE
RPLOT
RPT$
RSUM
RUN

SAVE

SB

SC
SCALE
SCRATCH
SEC
SECURE
SELECT
SEND
SET

SF

SGN
SHIFT
SHOW
SIGNAL
SIN

SIZE
SKIP
SORT
SPANISH
SPOLL
SQR
STANDARD
STATUS
STEP

Keyword Summary 609

STOP
STORAGE
STORE
SUB
SUBEND
SUBEXIT
SUM
SUSPEND
SV
SWEDISH
SYMBOL
SYSBOOT
SYSTEM
SYSTEM$

TAB
TABXY
TALK

TAN

THEN
TIME
TIME$
TIMEDATE
TIMEOUT
TO

TRACE
TRACK
TRANSFER
TRIGGER
TRIM$
TRN

TYPE

UN
UNCONFIGURE
UNL

UNLOCK

UNT

UNTIL

UPC$

USING

VAL
VAL$
VIEWPORT

WAIT
WHERE
WHILE
WIDTH
WINDOW
WORD
WRITE
WRITEIO

XREF
ZERO

NOTE 1: Although LOCATE and SCALE are recognized as reserved words when entered, they are stored and listed back as VIEWPORT and

WINDOW, respectively.

NOTE 2: Although CSUB can appear as a reserved word in a program listing, it is not recognized as a reserved word when entered from the

keyboard.

610 Keyword Summary

Manual Comment Sheet Instruction

If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

98613-90051

Name:

MANUAL COMMENT SHEET

BASIC 4.0 Language Reference
for the HP 9000 Series 200/300

Update No.

(See the Printing History in the front of the manual)

July 1985

Company:

Address:

Phone No:

fold

fold

fold

fold

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road

Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Reorder Number
98613-90051
Printed in U.S.A. 7/85

D

HEWLETT
PACKARD

98613-90654
Mfg. No. Only

il

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	replyA
	replyB
	xBack

